MediaWiki API result

This is the HTML representation of the JSON format. HTML is good for debugging, but is unsuitable for application use.

Specify the format parameter to change the output format. To see the non-HTML representation of the JSON format, set format=json.

See the complete documentation, or the API help for more information.

{
    "compare": {
        "fromid": 1,
        "fromrevid": 1,
        "fromns": 0,
        "fromtitle": "Ana s\u0259hif\u0259",
        "toid": 2,
        "torevid": 2,
        "tons": 0,
        "totitle": "Riyaziyyat",
        "*": "<tr><td colspan=\"2\" class=\"diff-lineno\" id=\"mw-diff-left-l1\">S\u0259tir 1:</td>\n<td colspan=\"2\" class=\"diff-lineno\">S\u0259tir 1:</td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>&lt;<del class=\"diffchange diffchange-inline\">strong</del>&gt;<del class=\"diffchange diffchange-inline\">MediaWiki qura\u015fd\u0131r\u0131ld\u0131</del>.&lt;/<del class=\"diffchange diffchange-inline\">strong</del>&gt;</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Fayl:Euclid.jpg|thumb|E.\u0259. III \u0259sr yunan riyaziyyat\u00e7\u0131s\u0131 [[Evklid]] (\u0259lind\u0259 p\u0259rgarla). [[Rafael Santi|Rafaelin]] ''[[Afina m\u0259kt\u0259bi (Rafael)|Afina m\u0259kt\u0259bi]]'' freskas\u0131ndan fraqment (1509\u20131511){{efn|Evklidin sa\u011fl\u0131\u011f\u0131ndak\u0131 fiziki g\u00f6r\u00fcn\u00fc\u015f\u00fcn\u0259 aid he\u00e7 bir r\u0259sm v\u0259 ya t\u0259svir antik d\u00f6vrd\u0259n bu g\u00fcn\u00fcm\u00fcz\u0259 q\u0259d\u0259r g\u0259lib \u00e7atmam\u0131\u015fd\u0131r. Buna g\u00f6r\u0259 d\u0259 Evklidin s\u0259n\u0259t \u0259s\u0259rl\u0259rind\u0259ki t\u0259sviri r\u0259ssam\u0131n t\u0259x\u0259yy\u00fcl\u00fcnd\u0259n as\u0131l\u0131d\u0131r (bax: [[Evklid]]).}}|259x259px]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">'''Riyaziyyat''' ({{Dil-el|\u03bc\u03ac\u03b8\u03b7\u03bc\u03b1}}, ''m\u00e1th\u0113ma'', \"bilik, elm, \u00f6yr\u0259nm\u0259k\") \u2014 \u0259d\u0259dl\u0259r ([[hesab]] v\u0259 [[\u0259d\u0259dl\u0259r n\u0259z\u0259riyy\u0259si]]),&lt;ref name=\":0\"&gt;\"[http://oed.com/view/Entry/114974 mathematics, ''n''] {{Vebarxiv|url=https://web.archive.org/web/20191116075558/https://www.oed.com/view/Entry/114974 |date=2019-11-16 }}.\". ''Oxford English Dictionary''. Oxford University Press. 2012. Archived from the original on November 16, 2019. Retrieved June 16, 2012. \"The science of space, number, quantity, and arrangement, whose methods involve logical reasoning and usually the use of symbolic notation, and which includes geometry, arithmetic, algebra, and analysis\".&lt;/ref&gt; d\u00fcsturlar v\u0259 \u0259laq\u0259li strukturlar ([[c\u0259br]]),&lt;ref name=\":1\"&gt;Kneebone, G. T. (1963). [https://books.google.com/books?id=tCXxf4vbXCcC&amp;pg=PA4 ''Mathematical Logic and the Foundations of Mathematics: An Introductory Survey''] {{Vebarxiv|url=https://web.archive.org/web/20170107141107/https://books.google.com/books?id=tCXxf4vbXCcC&amp;pg=PA4|date=2017-01-07}}. Dover. p. 4. ISBN 978-0-486-41712-7. \"Mathematics \u2026 is simply the study of abstract structures, or formal patterns of connectedness\".&lt;/ref&gt; fiqurlar v\u0259 f\u0259zalar ([[h\u0259nd\u0259s\u0259]]),&lt;ref name=\":0\" /&gt; k\u0259miyy\u0259tl\u0259r v\u0259 onlar\u0131n d\u0259yi\u015fm\u0259l\u0259ri ([[riyazi analiz]])&lt;ref name=\":2\"&gt;LaTorre, Donald R.; Kenelly, John W.; Biggers, Sherry S.; Carpenter, Laurel R.; Reed, Iris B.; Harris, Cynthia R. (2011). [https://books.google.com/books?id=1Ebu2Tij4QsC&amp;pg=PA2 ''Calculus Concepts: An Informal Approach to the Mathematics of Change''] {{Vebarxiv|url=https://web.archive.org/web/20170107135207/https://books.google.com/books?id=1Ebu2Tij4QsC&amp;pg=PA2|date=2017-01-07}}. Cengage Learning. p. 2. ISBN 978-1-4390-4957-0. \"Calculus is the study of change\u2014how things change, and how quickly they change\".&lt;/ref&gt;&lt;ref name=\":3\"&gt;Ramana (2007). [https://books.google.com/books?id=XCRC6BeKhIIC&amp;pg=SA2%E2%80%93PA10 ''Applied Mathematics''] {{Vebarxiv|url=https://web.archive.org/web/20220712162240/https://books.google.com/books?id=XCRC6BeKhIIC&amp;pg=SA2%E2%80%93PA10|date=2022-07-12}}. Tata McGraw\u2013Hill Education. p. 2.10. ISBN 978-0-07-066753-2. \"The mathematical study of change, motion, growth or decay is calculus\".&lt;/ref&gt;&lt;ref name=\":4\"&gt;Ziegler, G\u00fcnter M. (2011). [https://books.google.com/books?id=9TATfteVeVYC&amp;pg=PR7 \"What Is Mathematics?\"] {{Vebarxiv|url=https://web.archive.org/web/20170107124522/https://books.google.com/books?id=9TATfteVeVYC&amp;pg=PR7|date=2017-01-07}}. ''An Invitation to Mathematics: From Competitions to Research''. Springer. p. vii. ISBN 978-3-642-19532-7.&lt;/ref&gt; kimi m\u00f6vzular\u0131n \u00f6yr\u0259nilm\u0259sini \u0259hat\u0259 edir. Onun d\u0259qiq \u0259hat\u0259 dair\u0259si v\u0259 ya [[Epistemologiya|epistemoloji statusu]] haqq\u0131nda ortaq raz\u0131la\u015fma yoxdur.</ins>&lt;<ins class=\"diffchange diffchange-inline\">ref name=\":5\"</ins>&gt;<ins class=\"diffchange diffchange-inline\">Mura, Roberta (December 1993). \"Images of Mathematics Held by University Teachers of Mathematical Sciences\". ''Educational Studies in Mathematics''. '''25''' (4): 375\u201385. [[R\u0259q\u0259mli obyektin identifikatoru|doi]]:[[doi:10.1007/BF01273907|10.1007/BF01273907]]. JSTOR [https://www.jstor.org/stable/3482762 3482762] {{Vebarxiv|url=https://web.archive.org/web/20220712082306/https://www.jstor.org/stable/3482762 |date=2022-07-12 }}. S2CID [https://api.semanticscholar.org/CorpusID:122351146 122351146].&lt;/ref&gt;&lt;ref name=\":6\"&gt;Tobies, Renate &amp; Helmut Neunzert (2012). [https://books.google.com/books?id=EDm0eQqFUQ4C&amp;pg=PA9 ''Iris Runge: A Life at the Crossroads of Mathematics, Science, and Industry''] {{Vebarxiv|url=https://web.archive.org/web/20170107190909/https://books.google.com/books?id=EDm0eQqFUQ4C&amp;pg=PA9|date=2017-01-07}}. Springer. p. 9. ISBN 978-3-0348-0229-1. [I]t is first necessary to ask what is meant by mathematics in general. Illustrious scholars have debated this matter until they were blue in the face, and yet no consensus has been reached about whether mathematics is a natural science, a branch of the humanities, or an art form.&lt;/ref&gt; Riyaziyyat s\u00f6z\u00fcn\u00fcn anlam\u0131 (\u0259r\u0259bc\u0259 \u0627\u0644\u0631\u064a\u0627\u0636\u064a\u0627\u062a) \u0259r\u0259b dilind\u0259 ''riad'' (\u0631\u064a\u0627\u0636) kimi oxunan v\u0259 ya\u015f\u0131ll\u0131\u011f\u0131 olan sulu torpaq m\u0259nas\u0131n\u0131 ver\u0259n s\u00f6z\u00fcnd\u0259n ir\u0259li g\u0259lir, \u0259r\u0259bl\u0259rin ya\u015fad\u0131qlar\u0131 yerl\u0259rd\u0259 torpaq sah\u0259l\u0259rin m\u00fc\u0259yy\u0259n edilm\u0259si il\u0259 onlar\u0131n suvar\u0131lmas\u0131 \u00fc\u00e7\u00fcn g\u0259r\u0259k g\u0259l\u0259n suyun miqdar\u0131n\u0131n hesablanmas\u0131nda istifad\u0259 edilmi\u015f bilik v\u0259 bacar\u0131qlar toplusuna deyilmi\u015fdi.&lt;ref&gt;{{Cite web |title=\u0644\u0645\u0627\u0630\u0627 \u0633\u0645\u064a\u062a \u0627\u0644\u0631\u064a\u0627\u0636\u064a\u0627\u062a \u0628\u0647\u0630\u0627 \u0627\u0644\u0627\u0633\u0645\u061f \u0645\u0627 \u0647\u0648 \u0627\u0644\u0645\u0639\u0646\u0649 \u0627\u0644\u062f\u0642\u064a\u0642 \u0644\u0644\u0631\u064a\u0627\u0636\u064a\u0627\u062a\u061f |url=https://ar.quora.com/%D8%B3%D8%A4%D8%A7%D9%84-%D9%81%D9%84%D8%B3%D9%81%D9%8A-%D9%84%D9%85-%D8%A7%D8%AC%D8%AF-%D8%A5%D8%AC%D8%A7%D8%A8%D8%AA%D9%87-%D8%A5%D9%84%D9%89-%D8%A7%D9%84%D8%A2%D9%86-%D9%84%D9%85%D8%A7%D8%B0%D8%A7#:~:text=%D9%87%D8%B0%D8%A7%20%D9%85%D9%86%20%D8%A8%D8%A7%D8%A8%20%D8%AA%D8%B3%D9%85%D9%8A%D8%A9%20%D8%A7%D9%84%D8%B9%D9%84%D9%85,%D9%84%D9%87%D8%B0%D8%A7%20%D8%B3%D9%85%D9%88%D9%87%D8%A7%20%D8%A8%20%22%D8%A7%D9%84%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA%22</ins>. <ins class=\"diffchange diffchange-inline\">|website=Quora}}</ins>&lt;/<ins class=\"diffchange diffchange-inline\">ref</ins>&gt;</div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>Bu <del class=\"diffchange diffchange-inline\">vikinin istifad\u0259si il\u0259 ba\u011fl\u0131 m\u0259lumat almaq \u00fc\u00e7\u00fcn </del>[<del class=\"diffchange diffchange-inline\">https://www</del>.<del class=\"diffchange diffchange-inline\">mediawiki</del>.<del class=\"diffchange diffchange-inline\">org/wiki/Special:MyLanguage/Help:Contents \u0130stifad\u0259\u00e7i m\u0259lumat s\u0259hif\u0259sin\u0259] bax\u0131n</del>.</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Riyazi f\u0259aliyy\u0259tin \u0259sas hiss\u0259si abstrakt (m\u00fcc\u0259rr\u0259d) obyektl\u0259rin xass\u0259l\u0259rini a\u015fkarlamaqdan v\u0259 isbat etm\u0259kd\u0259n (saf m\u00fchakim\u0259 yolu il\u0259) ibar\u0259tdir. </ins>Bu <ins class=\"diffchange diffchange-inline\">obyektl\u0259r ya t\u0259bi\u0259td\u0259n t\u0259cridetm\u0259 yoluyla (m\u0259s\u0259l\u0259n, [[natural \u0259d\u0259dl\u0259r]] v\u0259 ya [[X\u0259tt|x\u0259tl\u0259r]]), ya da (m\u00fcasir riyaziyyatda) [</ins>[<ins class=\"diffchange diffchange-inline\">aksiom]]lar adlanan \u0259sas xass\u0259l\u0259rl\u0259 m\u00fc\u0259yy\u0259n edil\u0259n abstrakt varl\u0131qlard\u0131r</ins>. <ins class=\"diffchange diffchange-inline\">\u0130sbat b\u0259zi [[Deduksiya|deduktiv]] qaydalar\u0131n art\u0131q m\u0259lum olan n\u0259tic\u0259l\u0259r\u0259, o c\u00fcml\u0259d\u0259n qabaqcadan isbatlanm\u0131\u015f [[teorem]]l\u0259r\u0259, aksiomlara v\u0259 (t\u0259bi\u0259td\u0259n t\u0259cridetm\u0259 hal\u0131nda) n\u0259z\u0259rd\u0259n ke\u00e7iril\u0259n n\u0259z\u0259riyy\u0259nin h\u0259qiqi ba\u015flan\u011f\u0131c n\u00f6qt\u0259l\u0259ri hesab edil\u0259n b\u0259zi \u0259sas xass\u0259l\u0259r\u0259 ard\u0131c\u0131l t\u0259tbiqind\u0259n ibar\u0259tdir</ins>. <ins class=\"diffchange diffchange-inline\">\u0130sbat\u0131n n\u0259tic\u0259si ''teorem'' adlan\u0131r</ins>.</div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>== <del class=\"diffchange diffchange-inline\">Faydal\u0131 ke\u00e7idl\u0259r </del>==</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Bir s\u0131ra elml\u0259rd\u0259 hadis\u0259l\u0259rin [[Modell\u0259\u015fdirm\u0259|modell\u0259\u015fdirilm\u0259si]] \u00fc\u00e7\u00fcn riyaziyyatdan geni\u015f istifad\u0259 olunur. Bu, eksperimental qanunlardan k\u0259miyy\u0259t n\u0259tic\u0259l\u0259rini \u00e7\u0131xarma\u011fa imkan yarad\u0131r. M\u0259s\u0259l\u0259n, [[\u00dcmumd\u00fcnya cazib\u0259 qanunu|Nyutonun cazib\u0259 qanununun]] k\u00f6m\u0259yil\u0259 [[planet]]l\u0259rin h\u0259r\u0259k\u0259tini y\u00fcks\u0259k d\u0259qiqlikl\u0259 t\u0259xmin etm\u0259k olar. Riyazi h\u0259qiq\u0259tin h\u0259r hans\u0131 t\u0259cr\u00fcb\u0259d\u0259n m\u00fcst\u0259qil olmas\u0131 bel\u0259 proqnozlar\u0131n do\u011frulu\u011funun yaln\u0131z reall\u0131\u011f\u0131 t\u0259svir ed\u0259n [[model]]in adekvatl\u0131\u011f\u0131ndan as\u0131l\u0131 oldu\u011funu n\u0259z\u0259rd\u0259 tutur. Bel\u0259likl\u0259, b\u0259zi qeyri-d\u0259qiq proqnozlar ortaya \u00e7\u0131xd\u0131qda, bu, riyaziyyat\u0131n yanl\u0131\u015fl\u0131\u011f\u0131ndan deyil, modelin t\u0259kmill\u0259\u015fdirilm\u0259li v\u0259 ya d\u0259yi\u015fdirilm\u0259li oldu\u011fundan x\u0259b\u0259r verir. M\u0259s\u0259l\u0259n, [[Merkuri (planet)|Merkurinin]] [[periheli]] [[Pressesiya|presessiyas\u0131n\u0131]] Nyutonun cazib\u0259 qanunu il\u0259 izah etm\u0259k olmaz, lakin bu [[Albert Eyn\u015fteyn|Eyn\u015fteynin]] [[\u00fcmumi nisbilik n\u0259z\u0259riyy\u0259si]] il\u0259 d\u0259qiq izah olunur. Eyn\u015fteynin bu n\u0259z\u0259riyy\u0259sinin eksperimental t\u0259sdiqi onu g\u00f6st\u0259rir ki, Nyutonun cazib\u0259 qanunu yaln\u0131z bir n\u00f6v yax\u0131nla\u015fmad\u0131r (lakin g\u00fcnd\u0259lik h\u0259yatda h\u0259l\u0259 d\u0259 \u00e7ox d\u0259qiqdir).</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>* [https://www.<del class=\"diffchange diffchange-inline\">mediawiki</del>.org/<del class=\"diffchange diffchange-inline\">wiki</del>/<del class=\"diffchange diffchange-inline\">Special</del>:<del class=\"diffchange diffchange-inline\">MyLanguage</del>/<del class=\"diffchange diffchange-inline\">Manual</del>:<del class=\"diffchange diffchange-inline\">Configuration_settings T\u0259nziml\u0259m\u0259l\u0259rin siyah\u0131s\u0131</del>]</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* </del>[https://www.<del class=\"diffchange diffchange-inline\">mediawiki</del>.org/<del class=\"diffchange diffchange-inline\">wiki</del>/<del class=\"diffchange diffchange-inline\">Special</del>:<del class=\"diffchange diffchange-inline\">MyLanguage</del>/<del class=\"diffchange diffchange-inline\">Manual</del>:<del class=\"diffchange diffchange-inline\">FAQ MediaWiki </del>haqq\u0131nda tez-tez <del class=\"diffchange diffchange-inline\">soru\u015fulan suallar</del>]</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Riyaziyyat [[t\u0259bi\u0259t elml\u0259ri]], [[m\u00fch\u0259ndislik]], [[tibb]], [[maliyy\u0259]], [[\u0130nformatika|komp\u00fcter elmi]] v\u0259 [[\u0130ctimai elml\u0259r|sosial elml\u0259r]] d\u0259 daxil olmaqla bir \u00e7ox sah\u0259 \u00fc\u00e7\u00fcn vacibdir. Riyaziyyat\u0131n b\u0259zi sah\u0259l\u0259ri, m\u0259s\u0259l\u0259n, [[statistika]] v\u0259 [[oyunlar n\u0259z\u0259riyy\u0259si]], onlar\u0131n t\u0259tbiqi il\u0259 birba\u015fa \u0259laq\u0259li \u015f\u0259kild\u0259 inki\u015faf etdirilir v\u0259 \u00e7ox vaxt [[t\u0259tbiqi riyaziyyat]] ad\u0131 alt\u0131nda qrupla\u015fd\u0131r\u0131l\u0131r. Dig\u0259r riyazi sah\u0259l\u0259r h\u0259r hans\u0131 bir t\u0259tbiqd\u0259n as\u0131l\u0131 olmayaraq inki\u015faf etdirilir (v\u0259 buna g\u00f6r\u0259 d\u0259 saf riyaziyyat adlan\u0131r), lakin bir \u00e7ox hallarda onlar\u0131n da praktik t\u0259tbiql\u0259ri sonralar a\u015fkar edilir.&lt;ref name</ins>=<ins class=\"diffchange diffchange-inline\">\":7\"&gt;[[:en:Mathematics#CITEREFPeterson2001|Peterson 2001]], p. 12&lt;/ref&gt;&lt;ref name</ins>=<ins class=\"diffchange diffchange-inline\">\":8\"&gt;Wigner, Eugene (1960). [https://math.dartmouth.edu/~matc/MathDrama/reading/Wigner.html \"The Unreasonable Effectiveness of Mathematics in the Natural Sciences\"]. ''[[:en:Communications on Pure and Applied Mathematics|Communications on Pure and Applied Mathematics]]''. 13 (1): 1\u201314. Bibcode:1960CPAM\u202613\u2026.1W. doi:10.1002/cpa.3160130102. 28 fevral 2011 tarixind\u0259 [https://web.archive.org/web/20110228152633/http://www.dartmouth.edu/~matc/MathDrama/reading/Wigner.html orijinal\u0131ndan] arxivl\u0259\u015fdirilib.&lt;/ref&gt; Uy\u011fun bir n\u00fcmun\u0259, tarixi Evklid\u0259 q\u0259d\u0259r gedib \u00e7\u0131xan, amma RSA kriptosistemind\u0259 (komp\u00fcter \u015f\u0259b\u0259k\u0259l\u0259rinin t\u0259hl\u00fck\u0259sizliyi \u00fc\u00e7\u00fcn) istifad\u0259 edilm\u0259mi\u015fd\u0259n \u00f6nc\u0259 praktik t\u0259tbiq\u0259 malik olmayan tam\u0131 vuruqlara ay\u0131rma problemidir.</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>* [https://<del class=\"diffchange diffchange-inline\">lists</del>.<del class=\"diffchange diffchange-inline\">wikimedia</del>.org/<del class=\"diffchange diffchange-inline\">postorius</del>/<del class=\"diffchange diffchange-inline\">lists</del>/<del class=\"diffchange diffchange-inline\">mediawiki</del>-<del class=\"diffchange diffchange-inline\">announce</del>.<del class=\"diffchange diffchange-inline\">lists</del>.<del class=\"diffchange diffchange-inline\">wikimedia</del>.org/ <del class=\"diffchange diffchange-inline\">MediaWiki e</del>-<del class=\"diffchange diffchange-inline\">po\u00e7t siyah\u0131s\u0131</del>]</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Riyaziyyat yaz\u0131l\u0131 qeydl\u0259rin m\u00f6vcud oldu\u011fu antik d\u00f6vrl\u0259rd\u0259n b\u0259ri b\u0259\u015f\u0259ri f\u0259aliyy\u0259t sah\u0259si olmu\u015fdur. Bununla bel\u0259, \"isbat\" anlay\u0131\u015f\u0131 v\u0259 onunla \u0259laq\u0259li \"riyazi ciddilik\" ilk d\u0259f\u0259 Yunan riyaziyyat\u0131nda, x\u00fcsusil\u0259 d\u0259 [[Evklid]]in ''Ba\u015flan\u011f\u0131clar'' \u0259s\u0259rind\u0259 ortaya \u00e7\u0131x\u0131r.&lt;ref name=\":9\"&gt;Wise, David. [http://jwilson.coe.uga.edu/EMT668/EMAT6680.F99/Wise/essay7/essay7.htm \"Eudoxus' Influence on Euclid's Elements with a close look at The Method of Exhaustion\"] {{Vebarxiv|url=https://web.archive.org/web/20190601004355/http://jwilson.coe.uga.edu/emt668/EMAT6680.F99/Wise/essay7/essay7.htm |date=2019-06-01 }}. ''jwilson.coe.uga.edu''. 1 iyun 2019 tarixind\u0259 [https://web.archive.org/web/20190601004355/http://jwilson.coe.uga.edu/emt668/EMAT6680.F99/Wise/essay7/essay7.htm orijinal\u0131ndan] arxivl\u0259\u015fdirilib 1.06.2019.&lt;/ref&gt; Riyaziyyat, c\u0259br v\u0259 sonsuz ki\u00e7ikl\u0259r hesab\u0131n\u0131n \u0259sas riyazi sah\u0259l\u0259r kimi hesab v\u0259 h\u0259nd\u0259s\u0259y\u0259 qo\u015fuldu\u011fu [[\u0130ntibah d\u00f6vr\u00fc]]n\u0259 q\u0259d\u0259r nisb\u0259t\u0259n z\u0259if s\u00fcr\u0259tl\u0259 inki\u015faf etdi. O vaxtdan b\u0259ri riyazi yenilikl\u0259r v\u0259 elmi k\u0259\u015ffl\u0259r aras\u0131ndak\u0131 qar\u015f\u0131l\u0131ql\u0131 \u0259laq\u0259 riyazi k\u0259\u015ffl\u0259rin xeyli d\u0259r\u0259c\u0259d\u0259 artmas\u0131na s\u0259b\u0259b oldu. 19-cu \u0259srin sonunda riyaziyyat\u0131n \u0259sasl\u0131 b\u00f6hran\u0131 aksiomatik metodun sisteml\u0259\u015fdirilm\u0259sin\u0259 s\u0259b\u0259b oldu. Bu is\u0259 \u00f6z n\u00f6vb\u0259sind\u0259 riyaziyyat\u0131n v\u0259 onun t\u0259tbiq sah\u0259l\u0259rinin sayca k\u0259skin artmas\u0131na s\u0259b\u0259b oldu; riyaziyyat\u0131n altm\u0131\u015fdan \u00e7ox birinci s\u0259viyy\u0259li sah\u0259sini qeyd ed\u0259n b\u00f6lm\u0259l\u0259r \u00fczr\u0259 t\u0259snifat bunu t\u0259sdiql\u0259yir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>== <ins class=\"diffchange diffchange-inline\">Riyaziyyat\u0131n sah\u0259l\u0259ri ==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Fayl:Abacus 6.png|thumb|[[Abak]] q\u0259dim zamanlardan istifad\u0259 edil\u0259n sad\u0259 hesablama al\u0259tidir.]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">\u0130ntibahdan \u0259vv\u0259l riyaziyyat iki \u0259sas sah\u0259y\u0259: \u0259d\u0259dl\u0259r \u00fcz\u0259rind\u0259ki \u0259m\u0259ll\u0259r\u0259 h\u0259sr olunmu\u015f hesaba v\u0259 fiqurlar\u0131 \u00f6yr\u0259n\u0259n h\u0259nd\u0259s\u0259y\u0259 ayr\u0131l\u0131rd\u0131. Bu d\u00f6vrd\u0259 riyaziyyatdan xeyli faydalanan [[numerologiya]] v\u0259 [[astrologiya]] kimi [[Yalan elml\u0259r|psevdoelml\u0259r]] d\u0259 m\u00f6vcud idi.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[\u0130ntibah d\u00f6vr\u00fc]]nd\u0259 iki \u0259sas sah\u0259 meydana \u00e7\u0131xd\u0131. Riyazi i\u015far\u0259l\u0259rin t\u0259tbiqi, kobud des\u0259k, d\u00fcsturlar\u0131n \u00f6yr\u0259nilm\u0259si v\u0259 onlar \u00fcz\u0259rind\u0259ki \u0259m\u0259ll\u0259rd\u0259n ibar\u0259t olan c\u0259br\u0259 g\u0259tirib \u00e7\u0131xard\u0131. Diferensial v\u0259 inteqral hesab\u0131, q\u0131saca \"kalkyulus\" arqumentl\u0259rin d\u0259yi\u015fm\u0259sini v\u0259 onlar aras\u0131ndak\u0131 \u0259laq\u0259ni modell\u0259\u015fdir\u0259n k\u0259silm\u0259z funksiyalar\u0131n t\u0259dqiqidir. D\u00f6rd \u0259sas sah\u0259y\u0259 g\u00f6r\u0259 apar\u0131lan bu b\u00f6lg\u00fc 19-cu \u0259srin sonlar\u0131na q\u0259d\u0259r q\u00fcvv\u0259d\u0259 qald\u0131, baxmayaraq ki, \u00e7ox vaxt riyaziyyata aid edil\u0259n [[g\u00f6y mexanikas\u0131]] v\u0259 [[b\u0259rk cisim mexanikas\u0131]] kimi b\u0259zi sah\u0259l\u0259r indi [[fizika]]ya aid edilir. H\u0259m\u00e7inin, bu d\u00f6vrd\u0259 inki\u015fafda olan b\u0259zi f\u0259nl\u0259r, ancaq sonralar muxtar sah\u0259l\u0259r olaraq q\u0259bul edil\u0259n [[ehtimal n\u0259z\u0259riyy\u0259si]] v\u0259 [[kombinatorika]] kimi riyaziyyat\u0131n (m\u00fcxt\u0259lif hiss\u0259l\u0259r\u0259 b\u00f6l\u00fcnm\u00fc\u015f) sah\u0259l\u0259rind\u0259n \u00f6nc\u0259 m\u00f6vcud idi.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">19-cu \u0259srin sonlar\u0131nda riyaziyyat\u0131n b\u00f6hran\u0131 v\u0259 bunun n\u0259tic\u0259sind\u0259 d\u0259 aksiomatik metodun sisteml\u0259\u015fdirilm\u0259si riyaziyyat sah\u0259l\u0259rind\u0259 h\u0259cmi partlay\u0131\u015fa s\u0259b\u0259b oldu.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">20-ci \u0259srin \u0259vv\u0259ll\u0259rind\u0259 riyaziyyatda m\u00f6vcud olan istiqam\u0259tl\u0259r haqq\u0131nda tarixi Paris Konqresinin b\u00f6lm\u0259l\u0259rinin siyah\u0131s\u0131na \u0259sas\u0259n fikir s\u00f6yl\u0259m\u0259k olar. Bu, \u0259sas d\u00f6rd b\u00f6lm\u0259d\u0259n: hesab v\u0259 c\u0259br; analiz; h\u0259nd\u0259s\u0259; [[mexanika]] v\u0259 [[riyazi fizika]], h\u0259m\u00e7inin daha iki: tarix v\u0259 biblioqrafiya; t\u0259dris v\u0259 metodologiya b\u00f6lm\u0259l\u0259rind\u0259n ibar\u0259tdir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">O d\u00f6vrd\u0259n ke\u00e7\u0259n zaman \u0259rzind\u0259 elmd\u0259 olan d\u0259yi\u015fiklikl\u0259r bar\u0259d\u0259 m\u00fcasir konqresl\u0259rin b\u00f6lm\u0259l\u0259r siyah\u0131s\u0131na \u0259sas\u0259n m\u0259lumat \u0259ld\u0259 etm\u0259k olar: [[riyazi m\u0259ntiq]] v\u0259 riyaziyyat\u0131n \u0259saslar\u0131; c\u0259br; \u0259d\u0259dl\u0259r n\u0259z\u0259riyy\u0259si; h\u0259nd\u0259s\u0259; topologiya; c\u0259bri h\u0259nd\u0259s\u0259; kompleks analiz; Li qrupu v\u0259 g\u00f6st\u0259ri\u015fl\u0259r n\u0259z\u0259riyy\u0259si; h\u0259qiqi v\u0259 funksional analiz; ehtimal n\u0259z\u0259riyy\u0259si v\u0259 riyazi statistika; x\u00fcsusi t\u00f6r\u0259m\u0259li diferensial t\u0259nlikl\u0259r; adi diferensial t\u0259nlikl\u0259r; riyazi fizika; \u0259d\u0259di \u00fcsullar v\u0259 hesablama n\u0259z\u0259riyy\u0259si; diskret riyaziyyat v\u0259 kombinatorika; informatikan\u0131n riyazi aspektl\u0259ri; qeyri-fiziki f\u0259nl\u0259r\u0259 riyaziyyat\u0131n t\u0259tbiqi; riyaziyyat tarixi; riyaziyyat\u0131n t\u0259drisi.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== \u018fd\u0259dl\u0259r n\u0259z\u0259riyy\u0259si ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">\u018fd\u0259dl\u0259r n\u0259z\u0259riyy\u0259sinin inki\u015faf\u0131 \u0259d\u0259dl\u0259r, y\u0259ni [[Natural \u0259d\u0259dl\u0259r|natural]] (&lt;math&gt;\\mathbb{N}&lt;/math&gt;), [[Tam \u0259d\u0259dl\u0259r|tam]] (&lt;math&gt;\\mathbb{Z}&lt;/math&gt;) v\u0259 [[Rasional \u0259d\u0259dl\u0259r|rasional]] (&lt;math&gt;\\mathbb{Q}&lt;/math&gt;) \u0259d\u0259dl\u0259r \u00fcz\u0259rind\u0259ki \u0259m\u0259ll\u0259rl\u0259 ba\u015flad\u0131. Q\u0259dimd\u0259 \u0259d\u0259dl\u0259r n\u0259z\u0259riyy\u0259si hesab adlan\u0131rd\u0131, lakin indi bu termin daha \u00e7ox \u0259d\u0259dl\u0259rl\u0259 ba\u011fl\u0131 hesablama \u00fcsullar\u0131 \u00fc\u00e7\u00fcn istifad\u0259 olunur.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">\u018fd\u0259dl\u0259r n\u0259z\u0259riyy\u0259sinin \u00f6z\u00fcn\u0259m\u0259xsuslu\u011fu ondan ibar\u0259tdir ki, o elementar kimi g\u00f6r\u00fcn\u0259n bir \u00e7ox \u00e7\u0259tin m\u0259s\u0259l\u0259l\u0259ri h\u0259ll etm\u0259k \u00fc\u00e7\u00fcn t\u0259kmil h\u0259ll metodlar\u0131ndan istifad\u0259 edir. Diqq\u0259t\u0259layiq bir n\u00fcmun\u0259, 1637-ci ild\u0259 [[Pyer Ferma]] t\u0259r\u0259find\u0259n ifad\u0259 edilmi\u015f v\u0259 yaln\u0131z 1994-c\u00fc ild\u0259 Endryu Uils t\u0259r\u0259find\u0259n kateqoriya n\u0259z\u0259riyy\u0259si v\u0259 homoloji c\u0259brin k\u00f6m\u0259yil\u0259 isbat edil\u0259n Ferman\u0131n son teoremidir. Ba\u015fqa bir misal, 2-d\u0259n b\u00f6y\u00fck h\u0259r bir c\u00fct tam \u0259d\u0259din iki sad\u0259 \u0259d\u0259din c\u0259mi oldu\u011funu iddia ed\u0259n Qoldbax f\u0259rziyy\u0259sidir. 1742-ci ild\u0259 [[Xristian Holdbax|Xristian Qoldbax]] t\u0259r\u0259find\u0259n bildirilmi\u015fdir ki, bu, xeyli s\u0259yl\u0259r\u0259 baxmayaraq isbats\u0131z qal\u0131r.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">T\u0259dqiq olunan probleml\u0259rin v\u0259 h\u0259ll \u00fcsullar\u0131n\u0131n m\u00fcxt\u0259lifliyi bax\u0131m\u0131ndan \u0259d\u0259dl\u0259r n\u0259z\u0259riyy\u0259si haz\u0131rda bir ne\u00e7\u0259 alt sah\u0259y\u0259 b\u00f6l\u00fcn\u00fcr, bunlara analitik \u0259d\u0259dl\u0259r n\u0259z\u0259riyy\u0259si, c\u0259bri \u0259d\u0259dl\u0259r n\u0259z\u0259riyy\u0259si, \u0259d\u0259dl\u0259rin h\u0259nd\u0259s\u0259si (metod y\u00f6n\u00fcml\u00fc), Diofant t\u0259nlikl\u0259ri v\u0259 transendent n\u0259z\u0259riyy\u0259 (problem y\u00f6n\u00fcml\u00fc) daxildir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== H\u0259nd\u0259s\u0259 ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">H\u0259nd\u0259s\u0259 hesab il\u0259 birlikd\u0259 riyaziyyat\u0131n \u0259n q\u0259dim qollar\u0131ndan biridir. O, \u0259sas\u0259n \u00f6l\u00e7m\u0259 v\u0259 memarl\u0131\u011f\u0131n ehtiyaclar\u0131ndan ortaya \u00e7\u0131xan [[X\u0259tt|x\u0259tl\u0259r]], [[bucaq]]lar v\u0259 [[\u00e7evr\u0259]]l\u0259r kimi formalara aid empirik t\u0259rifl\u0259rl\u0259 ba\u015fland\u0131.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">\u018fsas yenilik [[Q\u0259dim Yunan\u0131stan|q\u0259dim yunanlar]] t\u0259r\u0259find\u0259n isbatlar\u0131n i\u015fl\u0259nib haz\u0131rlanmas\u0131 idi: m\u0259s\u0259l\u0259n, iki uzunlu\u011fun b\u0259rab\u0259r oldu\u011funu \u00f6l\u00e7m\u0259 il\u0259 yoxlamaq kifay\u0259t deyil. Bel\u0259 bir xass\u0259 \u0259vv\u0259ll\u0259r isbat edilmi\u015f n\u0259tic\u0259l\u0259rd\u0259n (teoreml\u0259rd\u0259n) v\u0259 \u0259sas xass\u0259l\u0259rd\u0259n (bunlar isbat\u0131n (postulatlar\u0131n) predmeti olmaq \u00fc\u00e7\u00fcn \u00e7ox sad\u0259 oldu\u011funa g\u00f6r\u0259 \u00f6zl\u00fcy\u00fcnd\u0259 ayd\u0131n hesab olunur) m\u00fcc\u0259rr\u0259d \u0259sasland\u0131rma il\u0259 isbat edilm\u0259lidir. B\u00fct\u00fcn riyaziyyat\u0131n \u0259sas\u0131n\u0131 t\u0259\u015fkil ed\u0259n bu prinsip h\u0259nd\u0259s\u0259 \u00fc\u00e7\u00fcn i\u015fl\u0259nib haz\u0131rlanm\u0131\u015f v\u0259 t\u0259qrib\u0259n miladdan \u00f6nc\u0259 300-c\u00fc ild\u0259 Evklid t\u0259r\u0259find\u0259n ''Ba\u015flan\u011f\u0131clar'' kitab\u0131nda sisteml\u0259\u015fdirilmi\u015fdir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">N\u0259tic\u0259d\u0259 meydana \u00e7\u0131xan Evklid h\u0259nd\u0259s\u0259si Evklid m\u00fcst\u0259visind\u0259 ([[Planimetriya|m\u00fcst\u0259vi h\u0259nd\u0259s\u0259sind\u0259]]) v\u0259 (\u00fc\u00e7\u00f6l\u00e7\u00fcl\u00fc) Evklid f\u0259zas\u0131nda x\u0259tl\u0259r, [[m\u00fcst\u0259vi]]l\u0259r v\u0259 \u00e7evr\u0259l\u0259rin k\u00f6m\u0259yil\u0259 qurulan fiqurlar\u0131n \u00f6yr\u0259nilm\u0259sidir.{{efn|Buraya dair\u0259vi silindrl\u0259r\u00a0 v\u0259 m\u00fcst\u0259vil\u0259rl\u0259 k\u0259si\u015fm\u0259l\u0259ri olan konus hiss\u0259l\u0259r daxildir.}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Evklid h\u0259nd\u0259s\u0259si 17-ci \u0259sr\u0259 q\u0259d\u0259r, [[Rene Dekart]]\u0131n indi [[Karteziyan koordinat sistemi|Kartezian koordinatlar\u0131]] adlanan \u015feyi t\u0259qdim etm\u0259sin\u0259 q\u0259d\u0259r \u00fcsul v\u0259 ya \u0259hat\u0259 dair\u0259si d\u0259yi\u015fm\u0259d\u0259n ir\u0259lil\u0259m\u0259y\u0259 davam etdi. Bu, paradiqman\u0131n \u0259sas d\u0259yi\u015fikliyi idi, \u00e7\u00fcnki h\u0259qiqi \u0259d\u0259dl\u0259ri x\u0259tt par\u00e7alar\u0131n\u0131n uzunluqlar\u0131 kimi t\u0259yin etm\u0259k \u0259v\u0259zin\u0259, o, n\u00f6qt\u0259l\u0259rin \u0259d\u0259dl\u0259rd\u0259n (onlar\u0131n koordinatlar\u0131ndan) ibar\u0259t t\u0259svirind\u0259n c\u0259brd\u0259 v\u0259 daha sonra kalkulusda h\u0259nd\u0259si m\u0259s\u0259l\u0259l\u0259rd\u0259 istifad\u0259 etm\u0259y\u0259 imkan yarad\u0131rd\u0131. Bu par\u00e7alanm\u0131\u015f h\u0259nd\u0259s\u0259 yaln\u0131z metodlar\u0131 il\u0259 f\u0259rql\u0259n\u0259n iki hiss\u0259y\u0259: s\u0131rf h\u0259nd\u0259si \u00fcsullardan istifad\u0259 ed\u0259n sintetik h\u0259nd\u0259s\u0259y\u0259 v\u0259 koordinat sistemind\u0259n istifad\u0259 ed\u0259n analitik h\u0259nd\u0259s\u0259y\u0259 b\u00f6l\u00fcn\u00fcr.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Analitik h\u0259nd\u0259s\u0259 yeni fiqurlar\u0131n, x\u00fcsus\u0259n d\u0259 \u00e7evr\u0259 v\u0259 x\u0259tl\u0259rl\u0259 \u0259laq\u0259li olmayan \u0259yril\u0259rin \u00f6yr\u0259nilm\u0259sin\u0259 imkan verir; bu \u0259yril\u0259r ya funksiyalar\u0131n qrafiki (t\u0259dqiqi diferensial h\u0259nd\u0259s\u0259ni do\u011furmu\u015fdur) kimi, ya da m\u0259chullu t\u0259nlikl\u0259r, \u00e7ox vaxt polinomial t\u0259nlikl\u0259r (c\u0259bri h\u0259nd\u0259s\u0259nin do\u011furub) il\u0259 m\u00fc\u0259yy\u0259n edilir. Analitik h\u0259nd\u0259s\u0259 art\u0131q fiziki f\u0259zan\u0131n modeli olmayan \u00fc\u00e7d\u0259n b\u00f6y\u00fck f\u0259za \u00f6l\u00e7\u00fcl\u0259rini (\u00fc\u00e7d\u0259n art\u0131q koordinat\u0131 n\u0259z\u0259r\u0259 almaq kifay\u0259tdir) n\u0259z\u0259r\u0259 alma\u011fa imkan verir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">19-cu \u0259srd\u0259 h\u0259nd\u0259s\u0259 s\u00fcr\u0259tl\u0259 geni\u015fl\u0259ndi. 19-cu \u0259srin ikinci yar\u0131s\u0131ndak\u0131 b\u00f6y\u00fck hadis\u0259 is\u0259 paralellik postulat\u0131n\u0131n imtina olundu\u011fu qeyri-Evklid h\u0259nd\u0259s\u0259l\u0259rinin meydana \u00e7\u0131xmas\u0131 idi. Bu, Rassel paradoksu il\u0259 yana\u015f\u0131, yuxar\u0131da qeyd olunan postulat\u0131n do\u011frulu\u011funu \u015f\u00fcbh\u0259 alt\u0131na almaqla riyaziyyat\u0131n t\u0259m\u0259l b\u00f6hran\u0131n\u0131n ba\u015flan\u011f\u0131c n\u00f6qt\u0259l\u0259rind\u0259ndir. B\u00f6hran\u0131n bu c\u0259h\u0259ti aksiomatik metodun sisteml\u0259\u015fdirilm\u0259si v\u0259 se\u00e7ilmi\u015f aksiomlar\u0131n do\u011frulu\u011funun riyazi problem olmad\u0131\u011f\u0131n\u0131 q\u0259bul etm\u0259kl\u0259 h\u0259ll edilmi\u015fdir. \u00d6z n\u00f6vb\u0259sind\u0259, aksiomatik \u00fcsul ya aksiomlar\u0131n d\u0259yi\u015fdirilm\u0259si, ya da f\u0259zan\u0131n x\u00fcsusi \u00e7evrilm\u0259l\u0259ri zaman\u0131 invariant olan xass\u0259l\u0259ri n\u0259z\u0259r\u0259 almaqla \u0259ld\u0259 edil\u0259n m\u00fcxt\u0259lif h\u0259nd\u0259s\u0259l\u0259rin \u00f6yr\u0259nilm\u0259sin\u0259 imkan verir. Bu, h\u0259nd\u0259s\u0259nin bir s\u0131ra alt sah\u0259l\u0259ri v\u0259 \u00fcmumil\u0259\u015fdirm\u0259l\u0259ri il\u0259 n\u0259tic\u0259l\u0259nir:</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">16-c\u0131 \u0259srd\u0259 [[Jerar Dezarq]] t\u0259r\u0259find\u0259n ir\u0259li s\u00fcr\u00fcl\u0259n proyektiv h\u0259nd\u0259s\u0259, paralel x\u0259tl\u0259rin k\u0259si\u015fdiyi sonsuzluq n\u00f6qt\u0259l\u0259rini daxil ed\u0259r\u0259k Evklid h\u0259nd\u0259s\u0259sini geni\u015fl\u0259ndirir. Bu, k\u0259si\u015f\u0259n v\u0259 paralel x\u0259tl\u0259r\u0259 f\u0259rqli yana\u015fmadan boyun qa\u00e7\u0131rmaqla, klassik h\u0259nd\u0259s\u0259nin bir \u00e7ox aspektl\u0259rini sad\u0259l\u0259\u015fdirm\u0259y\u0259 imkan verir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Affin h\u0259nd\u0259s\u0259, paralelliy\u0259 n\u0259z\u0259r\u0259n v\u0259 uzunluq anlay\u0131\u015f\u0131ndan as\u0131l\u0131 olmayan xass\u0259l\u0259rin \u00f6yr\u0259nilm\u0259si il\u0259 m\u0259\u015f\u011ful olur.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Diferensial h\u0259nd\u0259s\u0259]], [[diferensiallanan funksiya]]lardan istifad\u0259 etm\u0259kl\u0259 m\u00fc\u0259yy\u0259n edil\u0259n \u0259yril\u0259rin, s\u0259thl\u0259rin v\u0259 onlar\u0131n \u00fcmumil\u0259\u015fdirilm\u0259sini \u00f6yr\u0259nir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[\u00c7oxobrazl\u0131|\u00c7oxobrazl\u0131lar n\u0259z\u0259riyy\u0259si]], m\u00fctl\u0259q daha b\u00f6y\u00fck bir f\u0259zaya uymayan formalar\u0131 \u00f6yr\u0259nir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Riman h\u0259nd\u0259s\u0259si]], \u0259yri f\u0259zalarda m\u0259saf\u0259 xass\u0259l\u0259rinin \u00f6yr\u0259nir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[C\u0259bri h\u0259nd\u0259s\u0259]], polinomlardan istifad\u0259 etm\u0259kl\u0259 m\u00fc\u0259yy\u0259n edil\u0259n \u0259yril\u0259rin, s\u0259thl\u0259rin v\u0259 onlar\u0131n \u00fcmumil\u0259\u015fdirilm\u0259sini t\u0259dqiq edir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Topologiya]], k\u0259silm\u0259z deformasiyalara m\u0259ruz qalan x\u00fcsusiyy\u0259tl\u0259ri \u00f6yr\u0259nir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[C\u0259bri topologiya]], topologiyada c\u0259bri \u00fcsullar\u0131n, \u0259sas\u0259n homoloji c\u0259brin istifad\u0259si il\u0259 m\u0259\u015f\u011ful olur.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Diskret h\u0259nd\u0259s\u0259]], h\u0259nd\u0259s\u0259d\u0259 sonlu konfiqurasiyalar\u0131 \u00f6yr\u0259nir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>* [<ins class=\"diffchange diffchange-inline\">[Qabar\u0131q h\u0259nd\u0259s\u0259]], [[qabar\u0131q \u00e7oxluq]]lar\u0131 \u00f6yr\u0259nir, o \u00f6z \u0259h\u0259miyy\u0259tini optimalla\u015fd\u0131rmadak\u0131 t\u0259tbiql\u0259rind\u0259n al\u0131r.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Kompleks h\u0259nd\u0259s\u0259]], h\u0259qiqi \u0259d\u0259dl\u0259ri [[kompleks \u0259d\u0259dl\u0259r]]l\u0259 \u0259v\u0259z etm\u0259kl\u0259 \u0259ld\u0259 edil\u0259n h\u0259nd\u0259s\u0259dir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">'''H\u0259nd\u0259s\u0259d\u0259 rast g\u0259lin\u0259n b\u0259zi fiqurlar'''</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{| style=\"border:1px solid #ddd; text-align:center; margin:0 auto\" cellspacing=\"20\"</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| [[Fayl:Isosceles-triangle-tikz.svg|frameless|70x70px]] || [[Fayl:Conic Sections.svg|frameless|78x78px]] || [[Fayl:Elliptic curve y^2 = x^3 - x.svg|frameless|76x76px]] || [[Fayl:Hyperbolic triangle.svg|frameless|73x73px]] || [[Fayl:Torus.svg|frameless|72x72px]] || [[Fayl:Mandel zoom 07 satellite.jpg|frameless|70x70px]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|-</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| [[\u00dc\u00e7bucaql\u0131|\u00dc\u00e7bucaq]] || [[Konik k\u0259sikl\u0259r]]|| [[Elliptik \u0259yri]]|| [[Hiperbolik \u00fc\u00e7bucaql\u0131|Hiperbolik \u00fc\u00e7bucaq]]|| [[Tor (h\u0259nd\u0259si fiqur)|Toroid]] || [[Fraktal]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== C\u0259br ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Fayl:Quadratic formula.svg|thumb|Kvadratik d\u00fcstur b\u00fct\u00fcn kvadrat t\u0259nlikl\u0259rin h\u0259ll\u0259rini y\u0131\u011fcam \u015f\u0259kild\u0259 ifad\u0259 edir]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">C\u0259br\u0259 t\u0259nlik v\u0259 d\u00fcsturlar \u00fcz\u0259rind\u0259 \u0259m\u0259ll\u0259r aparma s\u0259n\u0259ti kimi baxmaq olar. [[Diofant]] (III \u0259sr) v\u0259 [[\u018fl-Xar\u0259zmi]] (IX \u0259sr) c\u0259brin iki \u0259sas car\u00e7\u0131s\u0131 idi. Birincisi, nam\u0259lum natural \u0259d\u0259dl\u0259r (y\u0259ni t\u0259nlikl\u0259r) aras\u0131ndak\u0131 b\u0259zi \u0259laq\u0259l\u0259ri h\u0259llini \u0259ld\u0259 ed\u0259n\u0259 q\u0259d\u0259r yeni \u0259laq\u0259l\u0259r \u00e7\u0131xarmaqla h\u0259ll etdi. \u0130kincisi, t\u0259nlikl\u0259ri \u00e7evirm\u0259k \u00fc\u00e7\u00fcn sistematik \u00fcsullar\u0131 t\u0259qdim etdi (m\u0259s\u0259l\u0259n, bir termini t\u0259nliyin bir t\u0259r\u0259find\u0259n dig\u0259r t\u0259r\u0259f\u0259 k\u00f6\u00e7\u00fcrm\u0259k). C\u0259br termini onun \u0259sas traktat\u0131n\u0131n ba\u015fl\u0131\u011f\u0131nda bu \u00fcsullardan birini adland\u0131rmaq \u00fc\u00e7\u00fcn istifad\u0259 etdiyi \u0259r\u0259b s\u00f6z\u00fc \u0259l-C\u0259brd\u0259n \u0259m\u0259l\u0259 g\u0259lmi\u015fdir. \"Kitab \u0259l-c\u0259br v\u0259l-m\u00fck\u0259bala\" (\"B\u0259rpa v\u0259 qar\u015f\u0131qoyma haqq\u0131nda kitab\") \u0259s\u0259rinin \u0259r\u0259bc\u0259 ad\u0131ndan g\u00f6t\u00fcr\u00fclm\u00fc\u015f \"\u0259l-c\u0259br\" s\u00f6z\u00fc vaxt ke\u00e7dikc\u0259 ham\u0131ya yax\u015f\u0131 m\u0259lum olan \"c\u0259br\" s\u00f6z\u00fcn\u0259 \u00e7evrildi. \u018fl-Xar\u0259zminin bu \u0259s\u0259ri is\u0259 t\u0259nlikl\u0259rin h\u0259lli haqq\u0131nda elmin yaranmas\u0131nda istinad n\u00f6qt\u0259si oldu \u018fl-Xar\u0259zminin bu \u0259s\u0259ri is\u0259 t\u0259nlikl\u0259rin h\u0259lli haqq\u0131nda elmin yaranmas\u0131nda istinad n\u00f6qt\u0259si oldu</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">\u018fl-Xar\u0259zminin \u0259s\u0259rind\u0259 nam\u0259lum k\u0259miyy\u0259tl\u0259r v\u0259 el\u0259c\u0259 d\u0259 aral\u0131q \u00e7\u0131xar\u0131\u015flar v\u0259 t\u0259nlikl\u0259rd\u0259ki \u00e7evirm\u0259l\u0259r s\u00f6zl\u0259rl\u0259 ifad\u0259 olunmu\u015fdur. \u00dcmumiyy\u0259tl\u0259, c\u0259brin ba\u015flan\u011f\u0131c inki\u015faf d\u00f6vrl\u0259ri \u00fc\u00e7\u00fcn xarakterik olan bu c\u00fcr yaz\u0131 stilini tarix\u00e7il\u0259r ritorik stil adland\u0131r\u0131rlar (xat\u0131rladaq ki, ritorika \u2014 natiqlik m\u0259har\u0259ti dem\u0259kdir).</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">C\u0259brd\u0259 n\u00f6vb\u0259ti b\u00f6y\u00fck s\u0131\u00e7ray\u0131\u015f 16-c\u0131 \u0259srin frans\u0131z alimi [[Fransua Viyet]]in ad\u0131 il\u0259 ba\u011fl\u0131d\u0131r. Riyaziyyat\u00e7\u0131lar aras\u0131nda ilk d\u0259f\u0259 o m\u0259chul k\u0259miyy\u0259tl\u0259ri v\u0259 k\u0259miyy\u0259tl\u0259rin \u0259msallar\u0131n\u0131 h\u0259rfl\u0259rl\u0259 ifad\u0259 etmi\u015fdir. M\u0259chul k\u0259miyy\u0259tl\u0259rin lat\u0131n \u0259lifbas\u0131n\u0131n son h\u0259rfl\u0259ri x, y, z il\u0259 i\u015far\u0259 olunmas\u0131 \u0259n\u0259n\u0259sin\u0259 g\u00f6r\u0259 is\u0259 Viyetin h\u0259mv\u0259t\u0259nlisi [[Rene Dekart]]a borcluyuq.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">19-cu \u0259sr\u0259 q\u0259d\u0259r c\u0259br \u0259sas\u0259n, haz\u0131rda [[x\u0259tti c\u0259br]] adlanan x\u0259tti t\u0259nlikl\u0259rin v\u0259 c\u0259bri t\u0259nlikl\u0259r adlanan bir nam\u0259lumda c\u0259bri t\u0259nlikl\u0259rin \u00f6yr\u0259nilm\u0259sind\u0259n ibar\u0259t idi (birm\u0259nal\u0131 olmasa da, h\u0259l\u0259 d\u0259 istifad\u0259 olunan bir termin). 19-cu \u0259srd\u0259 d\u0259yi\u015f\u0259nl\u0259r \u0259d\u0259dl\u0259rd\u0259n ba\u015fqa (m\u0259s\u0259l\u0259n, matrisl\u0259r, modul tam \u0259d\u0259dl\u0259r v\u0259 h\u0259nd\u0259si \u00e7evrilm\u0259l\u0259r) b\u0259zi \u0259m\u0259ll\u0259rin i\u015fl\u0259y\u0259 bil\u0259c\u0259yi, \u00e7ox vaxt hesab \u0259m\u0259ll\u0259rinin \u00fcmumil\u0259\u015fdirilm\u0259l\u0259rini t\u0259msil etm\u0259y\u0259 ba\u015flad\u0131. Bununla m\u0259\u015f\u011ful olmaq \u00fc\u00e7\u00fcn elementl\u0259ri m\u00fc\u0259yy\u0259n edilm\u0259mi\u015f \u00e7oxluqdan, \u00e7oxlu\u011fun elementl\u0259ri \u00fcz\u0259rind\u0259 h\u0259r\u0259k\u0259t ed\u0259n \u0259m\u0259ll\u0259rd\u0259n v\u0259 bu \u0259m\u0259ll\u0259rin \u0259m\u0259l etm\u0259li oldu\u011fu qaydalardan ibar\u0259t olan c\u0259bri struktur anlay\u0131\u015f\u0131 t\u0259qdim edilmi\u015fdir. Bel\u0259likl\u0259, c\u0259brin \u0259hat\u0259 dair\u0259si mahiyy\u0259tc\u0259 c\u0259bri strukturlar\u0131n \u00f6yr\u0259nilm\u0259sin\u0259 \u00e7evrildi. C\u0259brin bu obyekti m\u00fcasir c\u0259br v\u0259 ya m\u00fcc\u0259rr\u0259d c\u0259br adlan\u0131rd\u0131, sonuncu termin h\u0259l\u0259 d\u0259 \u0259sas\u0259n t\u0259hsil kontekstind\u0259, d\u00fcsturlarla manipulyasiyan\u0131n k\u00f6hn\u0259 \u00fcsulu il\u0259 \u0259laq\u0259li elementar c\u0259br\u0259 qar\u015f\u0131 istifad\u0259 olunur.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Fayl:Rubik's cube.svg|thumb|Rubik kubu: onun m\u00fcmk\u00fcn h\u0259r\u0259k\u0259tl\u0259rinin \u00f6yr\u0259nilm\u0259si qrup n\u0259z\u0259riyy\u0259sinin konkret t\u0259tbiqidir]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">C\u0259bri strukturlar\u0131n b\u0259zi n\u00f6vl\u0259ri riyaziyyat\u0131n bir \u00e7ox sah\u0259l\u0259rind\u0259 faydal\u0131 v\u0259 \u00e7ox vaxt fundamental x\u00fcsusiyy\u0259tl\u0259r\u0259 malikdir. Onlar\u0131n t\u0259dqiqat\u0131 bu g\u00fcn c\u0259brin muxtar hiss\u0259l\u0259ridir, bunlara a\u015fa\u011f\u0131dak\u0131lar daxildir:</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[qrup n\u0259z\u0259riyy\u0259si]];</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* sah\u0259 n\u0259z\u0259riyy\u0259si;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* vektor f\u0259zalar\u0131, \u00f6yr\u0259nilm\u0259si mahiyy\u0259tc\u0259 x\u0259tti c\u0259brl\u0259 eynidir;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* halqa n\u0259z\u0259riyy\u0259si;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* kommutativ c\u0259br, kommutativ halqalar\u0131 \u00f6yr\u0259nir, polinomlar\u0131n \u00f6yr\u0259nilm\u0259sini \u0259hat\u0259 edir v\u0259 c\u0259bri h\u0259nd\u0259s\u0259nin t\u0259m\u0259l b\u00f6l\u00fcm\u00fcd\u00fcr;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* homoloji c\u0259br</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Li c\u0259bri v\u0259 Li qrup n\u0259z\u0259riyy\u0259si;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Bul c\u0259bri (m\u0259ntiqi)|Bul c\u0259bri]], hans\u0131 ki, komp\u00fcterl\u0259rin m\u0259ntiqi strukturunun \u00f6yr\u0259nilm\u0259si \u00fc\u00e7\u00fcn geni\u015f istifad\u0259 olunur.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">C\u0259bri strukturlar\u0131n riyazi obyektl\u0259r kimi \u00f6yr\u0259nilm\u0259si universal c\u0259br v\u0259 kateqoriyalar n\u0259z\u0259riyy\u0259sinin obyektidir. Sonuncu h\u0259r bir riyazi struktura aiddir (yaln\u0131z c\u0259bri olanlara deyil). M\u0259n\u015f\u0259yind\u0259 o, topoloji f\u0259zalar kimi qeyri-c\u0259br obyektl\u0259rinin c\u0259bri t\u0259dqiqin\u0259 imkan verm\u0259k \u00fc\u00e7\u00fcn homoloji c\u0259brl\u0259 birlikd\u0259 t\u0259qdim edilmi\u015fdir; bu x\u00fcsusi t\u0259tbiq sah\u0259si c\u0259bri topologiya adlan\u0131r.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== Riyazi analiz ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">\u018fvv\u0259ll\u0259r sonsuz ki\u00e7il\u0259nl\u0259r hesab\u0131 adlanan diferensial v\u0259 inteqral hesab\u0131 ([[Lat\u0131nca|lat.]] ''calculus'') 17-ci \u0259srd\u0259 [[\u0130saak Nyuton|Nyuton]] v\u0259 [[Qotfrid Leybnits|Leybnis]] t\u0259r\u0259find\u0259n m\u00fcst\u0259qil olaraq eyni vaxtda t\u0259rtib edilmi\u015fdir. Bu , \u0259sas\u0259n biri dig\u0259rind\u0259n as\u0131l\u0131 olan iki d\u0259yi\u015f\u0259n k\u0259miyy\u0259tin \u0259laq\u0259sinin \u00f6yr\u0259nilm\u0259sidir. Hesablama 18-ci \u0259srd\u0259 [[Leonard Eyler|Eyler]] t\u0259r\u0259find\u0259n funksiya anlay\u0131\u015f\u0131n\u0131n t\u0259tbiqi v\u0259 bir \u00e7ox ba\u015fqa n\u0259tic\u0259l\u0259rl\u0259 geni\u015fl\u0259ndi. Hal-haz\u0131rda \"diferensial v\u0259 inteqral hesab\u0131\" \u0259sas\u0259n bu n\u0259z\u0259riyy\u0259nin elementar hiss\u0259sin\u0259 aiddir v\u0259 ad\u0259t\u0259n inki\u015faf etmi\u015f hiss\u0259l\u0259r \u00fc\u00e7\u00fcn \"analiz\" s\u00f6z\u00fcnd\u0259n istifad\u0259 olunur.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Analiz daha sonra d\u0259yi\u015f\u0259nl\u0259rin h\u0259qiqi \u0259d\u0259dl\u0259ri t\u0259msil etdiyi real analiz\u0259 v\u0259 d\u0259yi\u015f\u0259nl\u0259rin m\u00fcr\u0259kk\u0259b \u0259d\u0259dl\u0259ri t\u0259msil etdiyi kompleks analiz\u0259 b\u00f6l\u00fcn\u00fcr. Hal-haz\u0131rda analizin bir \u00e7ox alt sah\u0259l\u0259ri var, b\u0259zil\u0259ri riyaziyyat\u0131n dig\u0259r sah\u0259l\u0259ri il\u0259 payla\u015f\u0131l\u0131r; bunlara daxildir:</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* \u00c7oxd\u0259yi\u015f\u0259nli diferensial v\u0259 inteqral hesab\u0131</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Funksional analiz, burada d\u0259yi\u015f\u0259nl\u0259r m\u00fcxt\u0259lif funksiyalar\u0131 t\u0259msil edir;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[\u0130nteqral]]lama, \u00f6l\u00e7\u00fc n\u0259z\u0259riyy\u0259si v\u0259 potensial n\u0259z\u0259riyy\u0259, ham\u0131s\u0131 [[ehtimal n\u0259z\u0259riyy\u0259si]] il\u0259 s\u0131x ba\u011fl\u0131d\u0131r;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Adi diferensial t\u0259nlikl\u0259r]];</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* X\u00fcsusi t\u00f6r\u0259m\u0259li diferensial t\u0259nlikl\u0259r;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[\u018fd\u0259di analiz]], \u0259sas\u0259n riyaziyyat\u0131n bir \u00e7ox t\u0259tbiql\u0259rind\u0259 yaranan adi v\u0259 x\u00fcsusi t\u00f6r\u0259m\u0259li diferensial t\u0259nlikl\u0259rin h\u0259ll\u0259rinin komp\u00fcterl\u0259rd\u0259 hesablanmas\u0131na h\u0259sr edilmi\u015fdir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== Diskret riyaziyyat ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Diskret riyaziyyat ist\u0259r riyaziyyat\u0131n \u00f6z\u00fcnd\u0259 v\u0259 ist\u0259rs\u0259 d\u0259 onun t\u0259tbiqind\u0259 \u0259m\u0259l\u0259 g\u0259l\u0259n diskret strukturlar\u0131n xass\u0259l\u0259rini \u00f6yr\u0259n\u0259n b\u00f6lm\u0259dir. Bununla bel\u0259 \u0259n m\u00fch\u00fcm xarakteristikalar\u0131 sonlu v\u0259 ya hesabi qiym\u0259tl\u0259r alan obyektl\u0259r diskret strukturlar adlan\u0131r. Bel\u0259 strukturlar s\u0131ras\u0131na m\u0259s\u0259l\u0259n, sonlu qruplar, sonlu qraflar, informasiyalar\u0131 d\u0259yi\u015fdir\u0259n b\u0259zi riyazi modell\u0259r, sonlu avtomatlar, [[T\u00fcrinq ma\u015f\u0131n\u0131|Tyurinq ma\u015f\u0131nlar\u0131]] aiddir. Bu f\u0131nit (sonlu) xarakterli strukturlara misallard\u0131r. Diskret riyaziyyat\u0131n onlar\u0131 \u00f6yr\u0259n\u0259n b\u00f6lm\u0259si b\u0259z\u0259n sonlu (f\u0131nit) riyaziyyat adlan\u0131r. Finit strukturlardan ba\u015fqa diskret riyaziyyatda h\u0259m d\u0259 sonsuz diskret strukturlar (m\u0259s\u0259l\u0259n, sonsuz c\u0259bri sisteml\u0259r, sonsuz qraflar, sonsuz avtomatlar) \u00f6yr\u0259nilir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Diskret riyaziyyat\u0131n elementl\u0259ri \u00e7ox q\u0259dimd\u0259n m\u0259lumdur: riyaziyyat\u0131n ba\u015fqa b\u00f6lm\u0259l\u0259ri il\u0259 paralel inki\u015faf ed\u0259r\u0259k, onlar\u0131n t\u0259rkib hiss\u0259si olmu\u015fdur. Tam \u0259d\u0259dl\u0259rin xass\u0259l\u0259ri il\u0259 \u0259laq\u0259dar m\u0259s\u0259l\u0259l\u0259r s\u0259ciyy\u0259vidir, sonralar bu m\u0259s\u0259l\u0259l\u0259r \u0259d\u0259dl\u0259r n\u0259z\u0259riyy\u0259sinin yaranmas\u0131na g\u0259tirib \u00e7\u0131xarm\u0131\u015fd\u0131r. Diskret riyaziyyat\u0131n inki\u015faf\u0131n\u0131n bu m\u0259rh\u0259l\u0259si Diofant, Evklid, Pifaqor v\u0259 Eratosfenin ad\u0131 il\u0259 ba\u011fl\u0131d\u0131r. 17\u201318-ci \u0259srl\u0259rd\u0259, \u0259sas\u0259n, oyun m\u0259s\u0259l\u0259l\u0259ri il\u0259 ba\u011fl\u0131 kombinator analizinin elementl\u0259ri v\u0259 diskret ehtimal n\u0259z\u0259riyy\u0259si \u0259m\u0259l\u0259 g\u0259lmi\u015fdir. 18\u201319-cu \u0259srl\u0259rd\u0259 \u0259d\u0259dl\u0259r n\u0259z\u0259riyy\u0259si, c\u0259br v\u0259 h\u0259nd\u0259s\u0259nin \u00fcmumi probleml\u0259ri il\u0259 \u0259laq\u0259dar olaraq \u0259slind\u0259 diskret t\u0259bi\u0259t\u0259 malik olan c\u0259brin mahiyy\u0259tini v\u0259 g\u0259l\u0259c\u0259k inki\u015faf\u0131n\u0131 t\u0259yin ed\u0259n qrup, meydan v\u0259 halqa kimi m\u00fch\u00fcm anlay\u0131\u015flar meydana \u00e7\u0131xm\u0131\u015fd\u0131r. 17\u201319-cu \u0259srl\u0259r \u0259rzind\u0259 diskret riyaziyyat\u0131n inki\u015faf\u0131 K. Abel. E. Varinq, V. Hamilton, [[Evarist Qalua|E. Qalua]], A. Keli, [[Jozef Lui Laqranj|J. Laqranj]], A. Lejandr, [[Pyer Ferma|P. Ferma]] v\u0259 E. Eylerin adlar\u0131 il\u0259 ba\u011fl\u0131d\u0131r. 19\u201320-ci \u0259srl\u0259rd\u0259 riyazi d\u00fc\u015f\u00fcnc\u0259l\u0259rin ciddiliyin\u0259 meyillik v\u0259 riyaziyyat metodlar\u0131n\u0131n analizi daha bir b\u00f6lm\u0259nin \u2014 riyazi m\u0259ntiqin ayr\u0131lmas\u0131na g\u0259tirmi\u015fdir. Bu zaman diskret riyaziyyat\u0131n probleml\u0259ri il\u0259 L. Brauer, [[Corc Bul|C. Bul]], [[Norbert Viner|N. Viner]], [[Kurt H\u00f6del|K. G\u00f6del]]. [[David Hilbert|D. Hilbert]], A. \u00c7\u00f6r\u00e7, [[Klod \u015eennon|K. \u015eennon]] m\u0259\u015f\u011ful olmu\u015flar.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">XX \u0259srd\u0259 diskret riyaziyyat\u0131n inki\u015faf\u0131na, \u0259sas\u0259n, praktik ehtiyaclar s\u0259b\u0259b olmu\u015fdur. M\u00fcxt\u0259lif probleml\u0259ri riyazi metodlarla \u00f6yr\u0259n\u0259n yeni elm \u2014 [[kibernetika]] v\u0259 onun n\u0259z\u0259ri hiss\u0259si olan [[riyazi kibernetika]] meydana g\u0259ldi. Riyazi kibernetika diskret riyaziyyat\u0131n ideya v\u0259 m\u0259s\u0259l\u0259l\u0259rinin bir n\u00f6v t\u0259chized\u0259nidir. Bel\u0259 ki, b\u00f6y\u00fck hesablamalar t\u0259l\u0259b ed\u0259n t\u0259tbiqi m\u0259s\u0259l\u0259l\u0259r, onlar\u0131n h\u0259lli \u00fc\u00e7\u00fcn hesablama \u00fcsullar\u0131n\u0131n yarad\u0131lmas\u0131n\u0131 v\u0259 inki\u015faf\u0131n\u0131 stimulla\u015fd\u0131rd\u0131 ki, bu da hesablama riyaziyyat\u0131n\u0131n yaranmas\u0131na v\u0259 inki\u015faf\u0131na s\u0259b\u0259b oldu. \"Hesablama\" v\u0259 \"[[alqoritm]]\" anlay\u0131\u015flar\u0131n\u0131n analizi alqoritml\u0259r n\u0259z\u0259riyy\u0259sinin yaranmas\u0131na g\u0259tirdi. \u0130nformasiyalar\u0131n saxlanmas\u0131, i\u015fl\u0259nm\u0259si v\u0259 \u00f6t\u00fcr\u00fclm\u0259si m\u0259s\u0259l\u0259l\u0259ri informasiyalar n\u0259z\u0259riyy\u0259si, kodla\u015fd\u0131rma n\u0259z\u0259riyy\u0259si v\u0259 n\u0259z\u0259ri kriptoqrafiyan\u0131n meydana g\u0259lm\u0259sin\u0259 k\u00f6m\u0259k etmi\u015fdir. Riyaziyyat\u0131n daxili probleml\u0259ri il\u0259 yana\u015f\u0131, iqtisadi v\u0259 elektrotexnika m\u0259s\u0259l\u0259l\u0259ri, qraflar n\u0259z\u0259riyy\u0259sinin inki\u015faf\u0131n\u0131 t\u0259l\u0259b etdirdi. \u0130\u015fin t\u0259sviri v\u0259 m\u00fcr\u0259kk\u0259b idar\u0259etm\u0259 sisteml\u0259rinin yarad\u0131lmas\u0131 m\u0259s\u0259l\u0259l\u0259ri idar\u0259etm\u0259 sisteml\u0259ri n\u0259z\u0259riyy\u0259si v\u0259 avtomatlar n\u0259z\u0259riyy\u0259si f\u0259nnini t\u0259\u015fkil etdi.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== Riyazi m\u0259ntiq v\u0259 \u00e7oxluqlar n\u0259z\u0259riyy\u0259si ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Bu m\u00f6vzular 19-cu \u0259srin sonlar\u0131ndan etibar\u0259n riyaziyyata daxil olmu\u015fdur. Bu d\u00f6vr\u0259 q\u0259d\u0259r \u00e7oxluqlar riyazi obyektl\u0259r hesab edilmirdi v\u0259 m\u0259ntiqi-riyazi isbatlar \u00fc\u00e7\u00fcn istifad\u0259 olunsa da, [[f\u0259ls\u0259f\u0259]]y\u0259 aid edilirdi v\u0259 [[riyaziyyat\u00e7\u0131]]lar t\u0259r\u0259find\u0259n x\u00fcsusi olaraq \u00f6yr\u0259nilmirdi.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Eyni d\u00f6vrd\u0259 riyaziyyat\u0131n m\u00fcxt\u0259lif sah\u0259l\u0259rind\u0259 \u0259sas riyazi obyektl\u0259rin \u0259vv\u0259lki intuitiv t\u0259rifl\u0259rinin riyazi ciddiliyi t\u0259min etm\u0259k \u00fc\u00e7\u00fcn kifay\u0259t etm\u0259diyi ortaya \u00e7\u0131xd\u0131. Bu c\u00fcr intuitiv t\u0259rifl\u0259r\u0259 misal olaraq \"\u00e7oxluq obyektl\u0259rin toplusudur\", \"natural \u0259d\u0259d sayma \u00fc\u00e7\u00fcn istifad\u0259 olunan \u015feydir\", \"n\u00f6qt\u0259 b\u00fct\u00fcn istiqam\u0259tl\u0259rd\u0259 s\u0131f\u0131r uzunlu\u011fa malik formad\u0131r\", \"\u0259yri h\u0259r\u0259k\u0259t ed\u0259n n\u00f6qt\u0259nin buraxd\u0131\u011f\u0131 izdir\" v\u0259 s.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Bu, riyaziyyat\u0131n \u0259sasl\u0131 b\u00f6hran\u0131n\u0131n m\u0259n\u015f\u0259yidir.&lt;ref name=\":10\"&gt;Luke Howard Hodgkin &amp; Luke Hodgkin, ''A History of Mathematics'', Oxford University Press, 2005.&lt;/ref&gt; N\u0259hay\u0259t, r\u0259smil\u0259\u015fdirilmi\u015f \u00e7oxluq n\u0259z\u0259riyy\u0259si daxilind\u0259 aksiomatik metodu sisteml\u0259\u015fdirm\u0259kl\u0259 riyaziyyat\u0131n \u0259sas ax\u0131n\u0131nda h\u0259ll edilmi\u015fdir. Kobud des\u0259k, h\u0259r bir riyazi obyekt b\u00fct\u00fcn ox\u015far obyektl\u0259rin \u00e7oxlu\u011fu v\u0259 bu obyektl\u0259rin malik olmal\u0131 oldu\u011fu xass\u0259l\u0259rl\u0259 m\u00fc\u0259yy\u0259n edilir. M\u0259s\u0259l\u0259n, Peano arifmetikas\u0131nda natural \u0259d\u0259dl\u0259r \"s\u0131f\u0131r \u0259d\u0259ddir\", \"h\u0259r bir \u0259d\u0259d unikal varisidir\", \"s\u0131f\u0131rdan ba\u015fqa h\u0259r bir \u0259d\u0259din \u00f6z\u00fcn\u0259m\u0259xsus s\u0259l\u0259fi var\" v\u0259 b\u0259zi m\u00fclahiz\u0259 qaydalar\u0131 il\u0259 m\u00fc\u0259yy\u0259n edilir. Bu \u015f\u0259kild\u0259 m\u00fc\u0259yy\u0259n edil\u0259n obyektl\u0259rin \"t\u0259bi\u0259ti\" riyaziyyat\u00e7\u0131lar\u0131n [[filosof]]lara buraxd\u0131\u011f\u0131 f\u0259ls\u0259fi problemdir, h\u0259tta bir \u00e7ox riyaziyyat\u00e7\u0131n\u0131n bu t\u0259bi\u0259tl\u0259 ba\u011fl\u0131 fikirl\u0259ri oldu\u011fu v\u0259 \u00f6z r\u0259yl\u0259rind\u0259n \u2014 b\u0259z\u0259n \"intuisiya\" da deyil\u0259n \u2014 ara\u015fd\u0131rma v\u0259 s\u00fcbut tapmaq \u00fc\u00e7\u00fcn istifad\u0259 edirl\u0259r.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Bu yana\u015fma \"m\u0259ntiql\u0259ri\" (y\u0259ni icaz\u0259 veril\u0259n \u00e7\u0131xar\u0131\u015f qaydalar\u0131 toplusunu), teoreml\u0259ri, isbatlar\u0131 v\u0259 s.-ni riyazi obyektl\u0259r hesab etm\u0259y\u0259 v\u0259 onlar haqq\u0131nda teoreml\u0259ri isbat etm\u0259y\u0259 imkan verir. M\u0259s\u0259l\u0259n, G\u00f6delin natamaml\u0131q teoreml\u0259ri, kobud des\u0259k, t\u0259bii \u0259d\u0259dl\u0259ri ehtiva ed\u0259n h\u0259r bir n\u0259z\u0259riyy\u0259d\u0259 do\u011fru olan (daha geni\u015f n\u0259z\u0259riyy\u0259d\u0259 isbat oluna bil\u0259n), lakin n\u0259z\u0259riyy\u0259 daxilind\u0259 isbat olunmayan teoreml\u0259rin oldu\u011funu iddia edir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Riyaziyyat\u0131n \u0259saslar\u0131na bu c\u00fcr yana\u015fma 20-ci \u0259srin birinci yar\u0131s\u0131nda L. E. J. Brauerin r\u0259hb\u0259rliyi alt\u0131ndak\u0131 riyaziyyat\u00e7\u0131lar orta qanunu istisna ed\u0259n intuisiya m\u0259ntiqini ir\u0259li s\u00fcrm\u00fc\u015fd\u00fcr.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Bu probleml\u0259r v\u0259 m\u00fcbahis\u0259l\u0259r model n\u0259z\u0259riyy\u0259si (b\u0259zi m\u0259ntiqi n\u0259z\u0259riyy\u0259l\u0259rin dig\u0259r n\u0259z\u0259riyy\u0259 daxilind\u0259 modell\u0259\u015fdirilm\u0259si), isbat n\u0259z\u0259riyy\u0259si, tip n\u0259z\u0259riyy\u0259si, hesablama n\u0259z\u0259riyy\u0259si v\u0259 hesablamal\u0131 komplekslik n\u0259z\u0259riyy\u0259si kimi alt sah\u0259l\u0259rl\u0259 riyazi m\u0259ntiqin xeyli geni\u015fl\u0259nm\u0259sin\u0259 s\u0259b\u0259b oldu. Riyazi m\u0259ntiqin bu aspektl\u0259ri komp\u00fcterl\u0259rin yaranmas\u0131ndan \u0259vv\u0259l t\u0259qdim olunsa da, onlar\u0131n kompilyator dizayn\u0131nda, proqramlar\u0131n sertifikatla\u015fd\u0131r\u0131lmas\u0131nda, interaktiv isbat al\u0259tl\u0259rind\u0259 v\u0259 komp\u00fcter elminin dig\u0259r aspektl\u0259rind\u0259 istifad\u0259si \u00f6z n\u00f6vb\u0259sind\u0259 bu m\u0259ntiqi n\u0259z\u0259riyy\u0259l\u0259rin geni\u015fl\u0259nm\u0259sin\u0259 t\u00f6hf\u0259 verdi.&lt;ref name=\":11\"&gt;Halpern, Joseph; Harper, Robert; Immerman, Neil; Kolaitis, Phokion; Vardi, Moshe; Vianu, Victor (2001). [https://www.cs.cmu.edu/~rwh/papers/unreasonable/basl.pdf \"On the Unusual Effectiveness of Logic in Computer Science\"] {{Vebarxiv|url=https://web.archive.org/web/20210303115643/</ins>https://www.<ins class=\"diffchange diffchange-inline\">cs.cmu.edu/~rwh/papers/unreasonable/basl.pdf |date=2021-03-03 }} (PDF).&lt;/ref&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== T\u0259tbiqi riyaziyyat ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">T\u0259tbiqi riyaziyyat, ad\u0259t\u0259n, elm, m\u00fch\u0259ndislik, biznes v\u0259 s\u0259nayed\u0259 istifad\u0259 olunan riyazi metodlarla m\u0259\u015f\u011ful olur. Bel\u0259likl\u0259, \"[[t\u0259tbiqi riyaziyyat]]\" x\u00fcsusi ixtisasla\u015fm\u0131\u015f riyaziyyat elmidir. T\u0259tbiqi riyaziyyat termini h\u0259m d\u0259 riyaziyyat\u00e7\u0131lar\u0131n praktiki m\u0259s\u0259l\u0259l\u0259rl\u0259 m\u0259\u015f\u011ful oldu\u011fu pe\u015f\u0259kar ixtisas\u0131 t\u0259svir edir; praktiki m\u0259s\u0259l\u0259l\u0259r\u0259 diqq\u0259t yetir\u0259n bir pe\u015f\u0259 kimi t\u0259tbiqi riyaziyyat elm, m\u00fch\u0259ndislik v\u0259 riyazi praktikan\u0131n dig\u0259r sah\u0259l\u0259rind\u0259 \"riyazi modell\u0259rin formala\u015fd\u0131r\u0131lmas\u0131, \u00f6yr\u0259nilm\u0259si v\u0259 istifad\u0259si\"n\u0259 diqq\u0259t yetirir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Ke\u00e7mi\u015fd\u0259 praktik t\u0259tbiql\u0259r riyazi n\u0259z\u0259riyy\u0259l\u0259rin inki\u015faf\u0131na t\u0259kan vermi\u015f, daha sonra ilk n\u00f6vb\u0259d\u0259 riyaziyyat\u0131n \u00f6z m\u0259qs\u0259dl\u0259ri \u00fc\u00e7\u00fcn inki\u015faf etdirdiyi saf riyaziyyatda \u00f6yr\u0259nm\u0259 m\u00f6vzusuna \u00e7evrilmi\u015fdir. Bel\u0259likl\u0259, t\u0259tbiqi riyaziyyat\u0131n f\u0259aliyy\u0259ti saf riyaziyyatda apar\u0131lan t\u0259dqiqatlarla h\u0259yati \u015f\u0259kild\u0259 ba\u011fl\u0131d\u0131r.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== Statistika v\u0259 dig\u0259r q\u0259rar q\u0259buletm\u0259 elml\u0259ri ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">T\u0259tbiqi riyaziyyat, n\u0259z\u0259riyy\u0259si riyazi \u015f\u0259kild\u0259 formala\u015fan statistika f\u0259nni il\u0259, x\u00fcsus\u0259n, ehtimal n\u0259z\u0259riyy\u0259si il\u0259 \u0259h\u0259miyy\u0259tli d\u0259r\u0259c\u0259d\u0259 uzla\u015f\u0131r. Statistikl\u0259r (t\u0259dqiqat layih\u0259sinin bir hiss\u0259si kimi i\u015fl\u0259yirl\u0259r) t\u0259sad\u00fcfi se\u00e7im v\u0259 s\u0131naqlar\u0131n k\u00f6m\u0259yil\u0259 \"m\u0259ntiqli m\u0259lumat yarad\u0131rlar\";&lt;ref name=\":12\"&gt;Rao, C. R. (1997) ''Statistics and Truth: Putting Chance to Work'', World Scientific. ISBN 978-981-02-3111-8&lt;/ref&gt; statistik n\u00fcmun\u0259 v\u0259 ya s\u0131naq layih\u0259l\u0259ndirm\u0259 m\u0259lumatlar\u0131n\u0131n t\u0259hlilini m\u00fc\u0259yy\u0259n edir (m\u0259lumatlar \u0259l\u00e7atan olmam\u0131\u015fdan \u0259vv\u0259l). Eksperimentl\u0259rd\u0259n v\u0259 n\u00fcmun\u0259l\u0259rd\u0259n \u0259ld\u0259 edil\u0259n m\u0259lumatlar\u0131 yenid\u0259n n\u0259z\u0259rd\u0259n ke\u00e7ir\u0259rk\u0259n v\u0259 ya m\u00fc\u015fahid\u0259 t\u0259dqiqatlar\u0131ndan \u0259ld\u0259 edil\u0259n m\u0259lumatlar\u0131 t\u0259hlil ed\u0259rk\u0259n statistikl\u0259r modell\u0259\u015fdirm\u0259 s\u0259n\u0259tind\u0259n v\u0259 q\u0259rar q\u0259bul etm\u0259 n\u0259z\u0259riyy\u0259sind\u0259n istifad\u0259 ed\u0259r\u0259k \"veril\u0259nl\u0259r\u0259 m\u0259na y\u00fckl\u0259yirl\u0259r\" \u2014 model se\u00e7imi v\u0259 qiym\u0259tl\u0259ndirilm\u0259si il\u0259; t\u0259xmin edil\u0259n modell\u0259r v\u0259 ard\u0131c\u0131l proqnozlar yeni m\u0259lumatlar \u00fcz\u0259rind\u0259 s\u0131naqdan ke\u00e7irilm\u0259lidir.{{efn| Fizika, komp\u00fcter elmi v\u0259 dig\u0259r riyazi elml\u0259r kimi statistika da t\u0259tbiqi riyaziyyat\u0131n bir qolu olmaqdan \u0259lav\u0259, h\u0259m d\u0259 m\u00fcst\u0259qil bir sah\u0259dir. T\u0259dqiqat\u00e7\u0131-fizikl\u0259r v\u0259 komp\u00fcter aliml\u0259ri kimi t\u0259dqiqat\u00e7\u0131-statistikl\u0259r d\u0259 riyaziyyat\u00e7\u0131-aliml\u0259rdir. Bir \u00e7ox statistikin riyaziyyat \u00fczr\u0259 d\u0259r\u0259c\u0259si var v\u0259 b\u0259zi statistikl\u0259r d\u0259 riyaziyyat\u00e7\u0131d\u0131r.}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Statistik n\u0259z\u0259riyy\u0259 statistik f\u0259aliyy\u0259t riskini (g\u00f6zl\u0259nil\u0259n itkini) minimalla\u015fd\u0131r\u0131lmas\u0131 kimi q\u0259rar q\u0259buletm\u0259 probleml\u0259rini, m\u0259s\u0259l\u0259n, parametrl\u0259rin qiym\u0259tl\u0259ndirilm\u0259si, f\u0259rziyy\u0259l\u0259rin yoxlan\u0131lmas\u0131 v\u0259 \u0259n yax\u015f\u0131s\u0131n\u0131n se\u00e7ilm\u0259si kimi probleml\u0259ri \u00f6yr\u0259nir. Riyazi statistikan\u0131n bu \u0259n\u0259n\u0259vi sah\u0259l\u0259rind\u0259 statistik q\u0259rar problemi m\u00fc\u0259yy\u0259n m\u0259hdudiyy\u0259tl\u0259r alt\u0131nda g\u00f6zl\u0259nil\u0259n itki v\u0259 ya x\u0259rc kimi m\u0259qs\u0259d funksiyalar\u0131n\u0131 minimuma endirm\u0259kl\u0259 formul\u0259 edilir: M\u0259s\u0259l\u0259n, sor\u011funun t\u0259rtib edilm\u0259si \u00e7ox vaxt verilmi\u015f g\u00fcv\u0259n s\u0259viyy\u0259si g\u00f6st\u0259ricisi il\u0259 \u0259halinin orta d\u0259y\u0259rini qiym\u0259tl\u0259ndirm\u0259k x\u0259rcl\u0259rinin minimuma endirilm\u0259sini n\u0259z\u0259rd\u0259 tutur.&lt;ref name=\":13\"&gt;Rao, C. R. (1981). \"Foreword\". In Arthanari, T. S.; Dodge, Yadolah (eds.). ''Mathematical programming in statistics''. Wiley Series in Probability and Mathematical Statistics. New York: Wiley. pp. vii\u2013viii. ISBN 978-0-471-08073-2. MR 0607328.&lt;/ref&gt; Optimalla\u015fd\u0131rmadan istifad\u0259 etdiyin\u0259 g\u00f6r\u0259, statistikan\u0131n riyazi n\u0259z\u0259riyy\u0259si \u0259m\u0259liyyatlar t\u0259dqiqi, idar\u0259etm\u0259 n\u0259z\u0259riyy\u0259si v\u0259 riyazi iqtisadiyyat kimi dig\u0259r q\u0259rar q\u0259buletm\u0259 elml\u0259ri il\u0259 ortaq maraq dair\u0259sin\u0259 malikdir.&lt;ref name=\":14\"&gt;Whittle (1994, pp. 10\u201311, 14\u201318): Whittle, Peter (1994). \"Almost home\". In Kelly, F. P. (ed.). ''Probability, statistics and optimisation: A Tribute to Peter Whittle'' (previously \"A realised path: The Cambridge Statistical Laboratory up to 1993 (revised 2002)\" ed.). Chichester: John Wiley. pp. 1\u201328. ISBN 978-0-471-94829-2. 19 dekabr 2013 tarixind\u0259 [https://web.archive</ins>.org/<ins class=\"diffchange diffchange-inline\">web</ins>/<ins class=\"diffchange diffchange-inline\">20131219080017/http</ins>:/<ins class=\"diffchange diffchange-inline\">/www.statslab.cam.ac.uk/History/2history.html#6._1966--72</ins>:<ins class=\"diffchange diffchange-inline\">_The_Churchill_Chair orijinal\u0131ndan] arxivl\u0259\u015fdirilib.&lt;/ref&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== Hesablama riyaziyyat\u0131 ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Hesablama riyaziyyat\u0131 insan\u0131n \u0259d\u0259di qabiliyy\u0259ti \u00fc\u00e7\u00fcn ad\u0259t\u0259n \u00e7ox b\u00f6y\u00fck olan riyazi probleml\u0259rin h\u0259lli \u00fcsullar\u0131n\u0131 t\u0259klif edir v\u0259 \u00f6yr\u0259nir. \u018fd\u0259di analiz, funksional analiz v\u0259 yax\u0131nla\u015fma n\u0259z\u0259riyy\u0259sind\u0259n istifad\u0259 ed\u0259r\u0259k t\u0259hlild\u0259 probleml\u0259rin h\u0259lli \u00fcsullar\u0131n\u0131 \u00f6yr\u0259nir; \u0259d\u0259di analiz geni\u015f \u015f\u0259kild\u0259 yuvarlaqla\u015fd\u0131rma x\u0259talar\u0131na x\u00fcsusi diqq\u0259t yetirm\u0259kl\u0259 yax\u0131nla\u015fma v\u0259 diskretl\u0259\u015fdirm\u0259nin \u00f6yr\u0259nilm\u0259sini \u0259hat\u0259 edir. \u018fd\u0259di analiz v\u0259 daha geni\u015f m\u0259nada elmi hesablama da riyaziyyat elminin analitik olmayan m\u00f6vzular\u0131n\u0131, x\u00fcsus\u0259n alqoritmik-matris v\u0259 qrafik n\u0259z\u0259riyy\u0259sini \u00f6yr\u0259nir. Hesablama riyaziyyat\u0131n\u0131n dig\u0259r sah\u0259l\u0259rin\u0259 komp\u00fcter c\u0259bri v\u0259 simvolik hesablama daxildir.'' ''</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{| style=\"border:1px solid #ddd; text-align:center; margin:0 auto\" cellspacing=\"20\"</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| [[Fayl:Gravitation space source.png|96px]] || [[Fayl:BernoullisLawDerivationDiagram.svg|96px]] || [[Fayl:Composite trapezoidal rule illustration small.svg|96px]] || [[Fayl:Maximum boxed.png|96px]] || [[Fayl:Two red dice 01.svg|96px]] || [[Fayl:Oldfaithful3.png|96px]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|-</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| [[Riyazi fizika]] || [[Hidroaeromexanika]] || [[Riyazi analiz]] || [[Optimalla\u015fd\u0131rma]] || [[Ehtimal n\u0259z\u0259riyy\u0259si]] || [[Statistika]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|-</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| [[Fayl:Market Data Index NYA on 20050726 202628 UTC.png|96px]] || [[Fayl:Arbitrary-gametree-solved.svg|96px]] || [[Fayl:Signal transduction v1.png|96px]] || [[Fayl:Ch4-structure.png|96px]] || [[Fayl:GDP PPP Per Capita IMF 2008.png|96px]] || [[Fayl:Simple feedback control loop2.svg|96px]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|-</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| [[Riyazi maliyy\u0259]] || [[Oyunlar n\u0259z\u0259riyy\u0259si|Oyunlar N\u0259z\u0259riyy\u0259si]]|| [[Riyazi biologiya]] || [[Riyazi kimya]]|| [[Riyazi iqtisadiyyat]] ||\u00a0 [[\u0130dar\u0259etm\u0259 n\u0259z\u0259riyy\u0259si]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">== Tarix ==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Riyaziyyat tarixin\u0259 daim artan abstraksiyalar silsil\u0259si kimi baxmaq olar. T\u0259kam\u00fcl bax\u0131m\u0131ndan des\u0259k, bir \u00e7ox [[heyvanlar]] t\u0259r\u0259find\u0259n payla\u015f\u0131lan ilk abstraksiya,&lt;ref name=\":15\"&gt;Dehaene, Stanislas; Dehaene-Lambertz, Ghislaine; Cohen, Laurent (August 1998). \"Abstract representations of numbers in the animal and human brain\". ''Trends in Neurosciences''. '''21''' (8): 355\u201361. [[R\u0259q\u0259mli obyektin identifikatoru|doi]]:[[doi:10.1016/S0166-2236(98)01263-6|10.1016/S0166\u20132236(98)01263\u20136]]. PMID 9720604. [[:en:S2CID (identifier)|S2CID]] [https://api.semanticscholar.org/CorpusID:17414557 17414557].&lt;/ref&gt; ehtimal ki, \u0259d\u0259dl\u0259rl\u0259 ba\u011fl\u0131 idi: iki alma kolleksiyas\u0131n\u0131n v\u0259 iki porta\u011fal kolleksiyas\u0131n\u0131n (m\u0259s\u0259l\u0259n) ortaq bir \u015feyin oldu\u011funun f\u0259rqin\u0259 var\u0131lmas\u0131, y\u0259ni \u00fczvl\u0259rinin say\u0131. S\u00fcm\u00fckd\u0259 tap\u0131lan r\u0259q\u0259ml\u0259rin s\u00fcbut edildiyi kimi, tarixd\u0259n \u0259vv\u0259lki insanlar fiziki obyektl\u0259rin nec\u0259 hesablanaca\u011f\u0131n\u0131 bilm\u0259kl\u0259 yana\u015f\u0131, vaxt, g\u00fcnl\u0259r, f\u0259sill\u0259r v\u0259 ya ill\u0259r kimi m\u00fcc\u0259rr\u0259d k\u0259miyy\u0259tl\u0259ri d\u0259 hesablam\u0131\u015f ola bil\u0259rl\u0259r.&lt;ref name=\":16\"&gt;See, for example, Raymond L. Wilder, ''Evolution of Mathematical Concepts; an Elementary Study, passim''&lt;/ref&gt;&lt;ref name=\":17\"&gt;Zaslavsky, Claudia. (1999). ''[http://worldcat.org/oclc/843204342 Africa Counts: Number and Pattern in African Culture] {{Vebarxiv|url=https://web.archive.org/web/20210331144030/https://www.worldcat.org/title/africa-counts-number-and-pattern-in-african-culture/oclc/843204342|date=2021-03-31}}''. Chicago Review Press. ISBN 978-1-61374-115-3. [[OCLC]] [[oclc:843204342|843204342]]. 31 mart 2021 tarixind\u0259 [https://web.archive.org/web/20210331144030/https://www.worldcat.org/title/africa-counts-number-and-pattern-in-african-culture/oclc/843204342 orijinal\u0131ndan] arxivl\u0259\u015fdirilib&lt;/ref&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Fayl:Plimpton 322.jpg|thumb|Babill\u0259r\u0259 m\u0259xsus riyazi l\u00f6vh\u0259 Plimpton 322, eram\u0131zdan \u0259vv\u0259l 1800-c\u00fc il\u0259 aiddir.]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Daha m\u00fcr\u0259kk\u0259b riyaziyyat \u00fc\u00e7\u00fcn d\u0259lill\u0259r t\u0259xmin\u0259n eram\u0131zdan \u0259vv\u0259l 3000-ci il\u0259 q\u0259d\u0259r, [[babil]]lil\u0259r v\u0259 [[misir]]lil\u0259r vergi v\u0259 dig\u0259r maliyy\u0259 hesablamalar\u0131, tikinti v\u0259 astronomiya \u00fc\u00e7\u00fcn hesab, c\u0259br v\u0259 h\u0259nd\u0259s\u0259d\u0259n istifad\u0259 etm\u0259y\u0259 ba\u015flayanda ortaya \u00e7\u0131xm\u0131\u015fd\u0131r.&lt;ref name=\":18\"&gt;[[:en:Mathematics#CITEREFKline1990|Kline 1990]], Chapter 1.&lt;/ref&gt; Mesopotamiya v\u0259 Misird\u0259n g\u0259l\u0259n \u0259n q\u0259dim riyazi m\u0259tnl\u0259r eram\u0131zdan \u0259vv\u0259l 2000\u20131800-c\u00fc ill\u0259rdir. Bir \u00e7ox erk\u0259n m\u0259tnl\u0259rd\u0259 Pifaqor \u00fc\u00e7l\u00fcy\u00fc qeyd olunur v\u0259 n\u0259tic\u0259d\u0259 Pifaqor teoremi \u0259sas\u0259n hesab v\u0259 h\u0259nd\u0259s\u0259d\u0259n sonra \u0259n q\u0259dim v\u0259 geni\u015f yay\u0131lm\u0131\u015f riyazi anlay\u0131\u015f kimi g\u00f6r\u00fcn\u00fcr. Babild\u0259 elementar hesaba (toplama, \u00e7\u0131xma, vurma, b\u00f6lm\u0259) aid ilk arxeoloji qeydl\u0259r\u0259 rast g\u0259linir. Babillil\u0259r h\u0259m d\u0259 \"yer\u00f6l\u00e7m\u0259\" sistemin\u0259 malik idil\u0259r v\u0259 bucaqlar\u0131 v\u0259 vaxt\u0131 \u00f6l\u00e7m\u0259k \u00fc\u00e7\u00fcn bu g\u00fcn d\u0259 istifad\u0259 olunan altm\u0131\u015fl\u0131q say sistemind\u0259n istifad\u0259 edirdil\u0259r.&lt;ref name=\":19\"&gt;[[:en:Mathematics#CITEREFBoyer1991|Boyer 1991]], \"Mesopotamia\" pp. 24\u201327.&lt;/ref&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Fayl:Archimedes pi.svg|left|thumb|233x233px|Arximed burada t\u0259svir olunan ki\u00e7iltm\u0259 \u00fcsulundan istifad\u0259 ed\u0259r\u0259k, [[Pi (\u0259d\u0259d)|\u03c0]]-nin qiym\u0259tini t\u0259qribi hesablam\u0131\u015fd\u0131r.]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Eram\u0131zdan \u0259vv\u0259l 6-c\u0131 \u0259srd\u0259n ba\u015flayaraq Q\u0259dim Yunan\u0131standa Pifaqor\u00e7ular, h\u0259m\u00e7inin q\u0259dim yunanlar riyaziyyat\u0131 \u00f6z\u00fcn\u0259m\u0259xsus f\u0259nn kimi sistemli \u015f\u0259kild\u0259 \u00f6yr\u0259nm\u0259y\u0259 ba\u015flad\u0131lar.&lt;ref name=\":21\"&gt;Heath, Thomas Little (1981) [1921]. A History of Greek Mathematics: From Thales to Euclid. New York: Dover Publications. p. 1. ISBN 978-0-486-24073-2.&lt;/ref&gt; T\u0259qrib\u0259n eram\u0131zdan \u0259vv\u0259l 300-c\u00fc ild\u0259 Evklid haz\u0131rda riyaziyyatda istifad\u0259 olunan t\u0259rif, aksiom, teorem v\u0259 ibatdan ibar\u0259t aksiomatik metodu t\u0259qdim etdi. Onun ''Ba\u015flan\u011f\u0131clar'' kitab\u0131 b\u00fct\u00fcn d\u00f6vrl\u0259rin \u0259n u\u011furlu v\u0259 effektiv d\u0259rsliyi hesab olunur.&lt;ref name=\":21\"/&gt; Antik d\u00f6vr\u00fcn \u0259n b\u00f6y\u00fck riyaziyyat\u00e7\u0131s\u0131 \u00e7ox vaxt [[Arximed|Sirakuzal\u0131 Arximed]] (e.\u0259. 287\u2013212) hesab edilir.&lt;ref name=\":22\"&gt;[[:en:Mathematics#CITEREFBoyer1991|Boyer 1991]], \"Archimedes of Syracuse\" p. 120.&lt;/ref&gt; O f\u0131rlanma cisiml\u0259rinin s\u0259thinin sah\u0259sini v\u0259 h\u0259mini hesablamaq \u00fc\u00e7\u00fcn d\u00fcsturlar \u00e7\u0131xard\u0131 v\u0259 m\u00fcasir diferensial v\u0259 inteqral hesab\u0131ndan \u00e7ox da f\u0259rqli olmayan \u00fcsulla sonsuz s\u0131ralar\u0131n c\u0259mind\u0259n istifad\u0259 etm\u0259kl\u0259 parabolan\u0131n alt\u0131ndak\u0131 sah\u0259ni hesablamaq \u00fc\u00e7\u00fcn ki\u00e7iltm\u0259 \u00fcsulundan istifad\u0259 etdi.&lt;ref name=\":23\"&gt;[[:en:Mathematics#CITEREFBoyer1991|Boyer 1991]], \"Archimedes of Syracuse\" p. 130.&lt;/ref&gt; Yunan riyaziyyat\u0131n\u0131n dig\u0259r diqq\u0259t\u0259layiq nailiyy\u0259tl\u0259ri konik k\u0259sikl\u0259r (Perqal\u0131 Apolloni, e.\u0259. 3-c\u00fc \u0259sr),&lt;ref name=\":24\"&gt;[[:en:Mathematics#CITEREFBoyer1991|Boyer 1991]], \"Apollonius of Perga\" p. 145&lt;/ref&gt; triqonometriya (Nikeili Hipparx, eram\u0131zdan \u0259vv\u0259l 2-ci \u0259sr)&lt;ref name=\":25\"&gt;[[:en:Mathematics#CITEREFBoyer1991|Boyer 1991]], \"Greek Trigonometry and Mensuration\" p. 162.&lt;/ref&gt; v\u0259 c\u0259brin ba\u015flan\u011f\u0131clar\u0131d\u0131r (Diofant, eram\u0131z\u0131n III \u0259sri).&lt;ref name=\":26\"&gt;[[:en:Mathematics#CITEREFBoyer1991|Boyer 1991]], \"Revival and Decline of Greek Mathematics\" p. 180.&lt;/ref&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Fayl:Bakhshali numerals 2.jpg|thumb|264x264px|Bax\u015fali \u0259lyazmas\u0131nda istifad\u0259 olunan r\u0259q\u0259ml\u0259r eram\u0131zdan \u0259vv\u0259l II \u0259srd\u0259n eram\u0131z\u0131n II \u0259srin\u0259 aiddir.]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Bu g\u00fcn b\u00fct\u00fcn d\u00fcnyada istifad\u0259 edil\u0259n hindu-\u0259r\u0259b say sistemi v\u0259 onun \u0259m\u0259ll\u0259rind\u0259n istifad\u0259 qaydalar\u0131 eram\u0131z\u0131n birinci minilliyi \u0259rzind\u0259 Hindistanda inki\u015faf etmi\u015f v\u0259 \u0130slam riyaziyyat\u0131 vasit\u0259sil\u0259 Q\u0259rb d\u00fcnyas\u0131na \u00e7atd\u0131r\u0131lm\u0131\u015fd\u0131r. [[Hindistan]] riyaziyyat\u0131n\u0131n dig\u0259r diqq\u0259t\u0259layiq inki\u015faflar\u0131na sinus v\u0259 kosinusun m\u00fcasir t\u0259rifi v\u0259 yax\u0131nla\u015fmas\u0131 v\u0259 sonsuz s\u0131ralar\u0131n erk\u0259n formas\u0131 daxildir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Fayl:Image-Al-Kit\u0101b al-mu\u1e2bta\u1e63ar f\u012b \u1e25is\u0101b al-\u011fabr wa-l-muq\u0101bala.jpg|left|thumb|\u0259l-Xar\u0259zminin \u018fl-c\u0259br kitab\u0131ndan bir s\u0259hif\u0259]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Fayl:Fibonacci.jpg|thumb|245x245px|Leonardo Fibona\u00e7\u00e7i, 1-ci v\u0259 4-c\u00fc \u0259srl\u0259r aras\u0131nda hind riyaziyyat\u00e7\u0131lar\u0131 t\u0259r\u0259find\u0259n icad edil\u0259n hind-\u0259r\u0259b say sistemini Q\u0259rb d\u00fcnyas\u0131na t\u0259qdim ed\u0259n italyan riyaziyyat\u00e7\u0131s\u0131.]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">\u0130slam\u0131n Q\u0131z\u0131l d\u00f6vr\u00fcnd\u0259, x\u00fcsusil\u0259 9-cu v\u0259 10-cu \u0259srl\u0259rd\u0259 riyaziyyat Yunan riyaziyyat\u0131 \u00fcz\u0259rind\u0259 qurulan bir \u00e7ox m\u00fch\u00fcm yenilikl\u0259rl\u0259 rastla\u015fd\u0131. \u0130slam riyaziyyat\u0131n\u0131n \u0259n diqq\u0259t\u00e7\u0259k\u0259n nailiyy\u0259ti c\u0259brin inki\u015faf\u0131 olmu\u015fdur. \u0130slam d\u00f6vr\u00fcn\u00fcn dig\u0259r nailiyy\u0259tl\u0259ri aras\u0131nda sferik triqonometriyada ir\u0259lil\u0259yi\u015fl\u0259r v\u0259 \u0259r\u0259b say sistemin\u0259 onluq k\u0259sri bildir\u0259n n\u00f6qt\u0259nin \u0259lav\u0259 edilm\u0259si daxildir.&lt;ref name=\":27\"&gt;Saliba, George. (1994). ''[http://worldcat.org/oclc/28723059 A history of Arabic astronomy: planetary theories during the golden age of Islam] {{Vebarxiv|url=https://web.archive.org/web/20210331144039/https://www.worldcat.org/title/history-of-arabic-astronomy-planetary-theories-during-the-golden-age-of-islam/oclc/28723059|date=2021-03-31}}''. New York University Press. ISBN 978-0-8147-7962-0. [[OCLC]] [[oclc:28723059|28723059]]. 31 mart 2021 tarixind\u0259 [https://web.archive.org/web/20210331144039/https://www.worldcat.org/title/history-of-arabic-astronomy-planetary-theories-during-the-golden-age-of-islam/oclc/28723059 orijinal\u0131ndan] arxivl\u0259\u015fdirilib.&lt;/ref&gt; Bu d\u00f6vr\u00fcn bir \u00e7ox g\u00f6rk\u0259mli riyaziyyat\u00e7\u0131lar\u0131na \u018fl-Xar\u0259zmi, [[\u00d6m\u0259r X\u0259yyam]] v\u0259 [[N\u0259sir\u0259ddin Tusi]] kimi aliml\u0259r d\u0259 daxil idi.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Erk\u0259n m\u00fcasir d\u00f6vrd\u0259 Q\u0259rbi Avropada riyaziyyat s\u00fcr\u0259tl\u0259 inki\u015faf etm\u0259y\u0259 ba\u015flad\u0131. 17-ci \u0259srd\u0259 \u0130saak Nyuton v\u0259 Qotfrid Leybnis t\u0259r\u0259find\u0259n kalkulusun inki\u015faf\u0131 riyaziyyatda inqilab yaratd\u0131. Leonard Eyler 18-ci \u0259srin \u00e7oxsayl\u0131 teorem v\u0259 k\u0259\u015ffl\u0259r\u0259 t\u00f6hf\u0259 ver\u0259n \u0259n g\u00f6rk\u0259mli riyaziyyat\u00e7\u0131s\u0131 idi. 19-cu \u0259srin b\u0259lk\u0259 d\u0259 \u0259n qabaqc\u0131l riyaziyyat\u00e7\u0131s\u0131 c\u0259br, analiz, diferensial h\u0259nd\u0259s\u0259, matris n\u0259z\u0259riyy\u0259si, \u0259d\u0259dl\u0259r n\u0259z\u0259riyy\u0259si v\u0259 statistika kimi sah\u0259l\u0259r\u0259 \u00e7oxsayl\u0131 t\u00f6hf\u0259l\u0259r ver\u0259n alman riyaziyyat\u00e7\u0131s\u0131 Karl Qausdur. 20-ci \u0259srin \u0259vv\u0259ll\u0259rind\u0259 Kurt G\u00f6del \u00f6z\u00fcn\u00fcn natamaml\u0131q teoreml\u0259rini d\u0259rc ed\u0259r\u0259k riyaziyyat\u0131 d\u0259yi\u015fdirdi, hans\u0131 ki, h\u0259r hans\u0131 bir ard\u0131c\u0131l aksiomatik sistemin \u2013 hesab\u0131 t\u0259svir etm\u0259k \u00fc\u00e7\u00fcn kifay\u0259t q\u0259d\u0259r g\u00fccl\u00fc olarsa \u2013 isbat olunmayan do\u011fru m\u00fcdd\u0259alar\u0131 ehtiva ed\u0259c\u0259k.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">O vaxtdan b\u0259ri riyaziyyat \u00e7ox geni\u015fl\u0259ndi v\u0259 riyaziyyatla elm aras\u0131nda qar\u015f\u0131l\u0131ql\u0131 s\u0259m\u0259r\u0259li \u0259laq\u0259 yarand\u0131. Riyazi k\u0259\u015ffl\u0259r bu g\u00fcn\u0259 q\u0259d\u0259r davam etm\u0259kd\u0259dir. Mixail B. Sevryukun dediyin\u0259 g\u00f6r\u0259, Amerika Riyaziyyat C\u0259miyy\u0259tinin B\u00fclleteninin 2006-c\u0131 il yanvar say\u0131nda \"1940-c\u0131 ild\u0259n (MR-in f\u0259aliyy\u0259tinin ilk ili) Mathematical Reviews (Riyazi \u0130cmal) bazas\u0131na daxil edilmi\u015f m\u0259qal\u0259 v\u0259 kitablar\u0131n say\u0131 haz\u0131rda 1,9-dan \u00e7oxdur v\u0259 h\u0259r il veril\u0259nl\u0259r bazas\u0131na 75 mind\u0259n \u00e7ox element \u0259lav\u0259 olunur. Bu okeandak\u0131 \u0259s\u0259rl\u0259rin b\u00f6y\u00fck \u0259ks\u0259riyy\u0259tind\u0259 yeni riyazi teoreml\u0259r v\u0259 onlar\u0131n isbatlar\u0131 var.\"&lt;ref name=\":28\"&gt;[[:en:Mathematics#CITEREFSevryuk2006|Sevryuk 2006]</ins>]<ins class=\"diffchange diffchange-inline\">, pp. 101\u201309&lt;/ref&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== Etimologiya ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Yunan dilind\u0259ki \"''matematika''\" s\u00f6z\u00fcn\u00fcn k\u00f6k\u00fc ''m\u00e1th\u0113ma'' (''\u03bc\u03ac\u03b8\u03b7\u03bc\u03b1'') olub, bu da \"\u00f6yr\u0259nil\u0259n\",&lt;ref name=\":29\"&gt;[http://www.etymonline.com/index.php?term=mathematic&amp;allowed_in_frame=0 \"mathematic (n.)\"]. Online Etymology Dictionary.7 mart 2013 tarixind\u0259 [https://web.archive.org/web/20130307093926/http://etymonline.com/index.php?term=mathematic&amp;allowed_in_frame=0 orijinal\u0131ndan] arxivl\u0259\u015fdirilib&lt;/ref&gt; \"\u00f6yr\u0259nil\u0259n \u015fey\", y\u0259ni \"\u00f6yr\u0259nm\u0259k\" v\u0259 \"elm\" m\u0259nalar\u0131n\u0131 verir. \"Matematika\" s\u00f6z\u00fc klassik d\u00f6vrd\u0259 bel\u0259 daha dar v\u0259 texniki m\u0259nada, \"riyazi \u00e7al\u0131\u015fma\" m\u0259nas\u0131nda i\u015fl\u0259nirdi.&lt;ref name=\":30\"&gt;Both meanings can be found in Plato, the narrower in ''Republic'' </ins>[https://www.<ins class=\"diffchange diffchange-inline\">perseus.tufts.edu/hopper/text?doc=Plat.+Rep.+6.510c&amp;fromdoc=Perseus%3Atext%3A1999.01.0168 510c] 24 fevral 2021 tarixind\u0259 [[Wayback Machine]] t\u0259r\u0259find\u0259n [https://web.archive.org/web/20210224152747/http://www.perseus.tufts.edu/hopper/text?doc=Plat.+Rep.+6.510c&amp;fromdoc=Perseus%3Atext%3A1999.01.0168 orijinal\u0131ndan] arxivl\u0259\u015fdirilib, lakin Platon riyaziyyat s\u00f6z\u00fcnd\u0259n istifad\u0259 etm\u0259mi\u015fdir; Aristotel bunu \u015f\u0259rh etdi. \u03bc\u03b1\u03b8\u03b7\u03bc\u03b1\u03c4\u03b9\u03ba\u03ae. Liddell, Henry George; Scott, Robert; ''A Greek\u2013English Lexicon'' at the Perseus Project. ''OED Online'', \"Mathematics\".&lt;/ref&gt; Onun [[Sif\u0259t (nitq hiss\u0259si)|sif\u0259t]] qar\u015f\u0131l\u0131\u011f\u0131 ''math\u0113matik\u00f3s'' (\u03bc\u03b1\u03b8\u03b7\u03bc\u03b1\u03c4\u03b9\u03ba\u03cc\u03c2), \"\u00f6yr\u0259nm\u0259 il\u0259 \u0259laq\u0259li\" v\u0259 ya \"\u00e7al\u0131\u015fqan\" m\u0259nas\u0131n\u0131 verir v\u0259 bu da eynil\u0259 \"riyazi\" m\u0259nas\u0131n\u0131 verir. X\u00fcsusil\u0259, ''mat\u0113matik\u1e17 t\u00e9khn\u0113'' (\u03bc\u03b1\u03b8\u03b7\u03bc\u03b1\u03c4\u03b9\u03ba\u1f74 \u03c4\u03ad\u03c7\u03bd\u03b7; lat\u0131nca: ''ars mathematica'') \"riyazi m\u0259har\u0259t\" m\u0259nas\u0131n\u0131 verirdi.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Eynil\u0259, [[Pifaqor]]\u00e7uluqdak\u0131 iki \u0259sas t\u0259f\u0259kk\u00fcr m\u0259kt\u0259bind\u0259n biri ''math\u0113matikoi'' (\u03bc\u03b1\u03b8\u03b7\u03bc\u03b1\u03c4\u03b9\u03ba\u03bf\u03af) kimi tan\u0131n\u0131rd\u0131 \u2014 o zamanlar m\u00fcasir \"riyaziyyat\u00e7\u0131lar\" m\u0259nas\u0131n\u0131 deyil, \"\u00f6yr\u0259n\u0259nl\u0259r\" m\u0259nas\u0131n\u0131 verirdi.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">T\u0259xmin\u0259n 1700-c\u00fc il\u0259 q\u0259d\u0259r lat\u0131n v\u0259 ingilis dilind\u0259 riyaziyyat termini daha \u00e7ox \"riyaziyyat\" deyil, \"astrologiya\" (v\u0259 ya b\u0259z\u0259n \"astronomiya\") m\u0259nas\u0131n\u0131 verirdi; indiki M\u0259na t\u0259dric\u0259n indiki 1500-d\u0259n 1800-\u0259 d\u0259yi\u015fdi. Bu, bir ne\u00e7\u0259 s\u0259hv t\u0259rc\u00fcm\u0259 il\u0259 n\u0259tic\u0259l\u0259ndi. M\u0259s\u0259l\u0259n, M\u00fcq\u0259dd\u0259s Avqustinin xristianlar\u0131n astroloqlar m\u0259nas\u0131n\u0131 ver\u0259n riyaziyyatdan \u00e7\u0259kinm\u0259li oldu\u011fu bar\u0259d\u0259 x\u0259b\u0259rdarl\u0131\u011f\u0131 b\u0259z\u0259n \"riyaziyyat\u00e7\u0131lar\u0131n q\u0131nanmas\u0131\" m\u0259nas\u0131nda, s\u0259hv t\u0259rc\u00fcm\u0259 olunur.&lt;ref name=\":31\"&gt;Boas, Ralph (1995) [1991]. [https://books.google.com/books?id=f-EWj5WtQHgC&amp;pg=PA257 \"What Augustine Didn't Say About Mathematicians\"]. ''Lion Hunting and Other Mathematical Pursuits: A Collection of Mathematics, Verse, and Stories by the Late Ralph P. Boas, Jr''. Cambridge University Press. p. 257. ISBN 978-0-88385-323-8. 20 may 2020 tarixind\u0259 [https://web.archive</ins>.org/<ins class=\"diffchange diffchange-inline\">web/20200520183837/https://books.google.com/books?id=f-EWj5WtQHgC&amp;pg=PA257 orijinal\u0131ndan] arxivl\u0259\u015fdirilib&lt;/ref&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Frans\u0131zlar|Frans\u0131z]] c\u0259m formas\u0131 les math\u00e9matiques (v\u0259 daha az istifad\u0259 olunan t\u0259k t\u00f6r\u0259m\u0259 la math\u00e9matique) kimi ingilis dilind\u0259 g\u00f6r\u00fcn\u0259n c\u0259m formas\u0131 yunanca ta math\u0113matik\u00e1 (\u03c4\u1f70 \u03bc\u03b1\u03b8\u03b7\u03bc\u03b1\u03c4) c\u0259min\u0259 \u0259saslanan Lat\u0131n neyter c\u0259m riyaziyyat\u0131na (Sisero) qay\u0131d\u0131r. Aristotel (e.\u0259. 384\u2013322) t\u0259r\u0259find\u0259n istifad\u0259 edilmi\u015f v\u0259 t\u0259qrib\u0259n \"riyazi h\u0259r \u015fey\" m\u0259nas\u0131n\u0131 verir, baxmayaraq ki, ingilis dilinin yaln\u0131z mathematic(al) sif\u0259tini g\u00f6t\u00fcrm\u0259si v\u0259 fizika v\u0259 metafizika n\u00fcmun\u0259sind\u0259n sonra riyaziyyat ad\u0131n\u0131 yenid\u0259n formala\u015fd\u0131rmas\u0131 inand\u0131r\u0131c\u0131d\u0131r. yunancadan miras qalm\u0131\u015fd\u0131r.&lt;ref name=\":32\"&gt;''The Oxford Dictionary of English Etymology'', ''Oxford English Dictionary'', ''sub'' \"mathematics\", \"mathematic\", \"mathematics\"&lt;/ref&gt; \u0130ngilis dilind\u0259 riyaziyyat ad\u0131 t\u0259k fel q\u0259bul edir. Tez-tez riyaziyyata v\u0259 ya \u015eimali Amerikada ''math'' kimi q\u0131sald\u0131l\u0131r.&lt;ref name=\":33\"&gt;[http://oed.com/view/Entry/114982 \"maths, ''n''.\"] and [http://oed.com</ins>/<ins class=\"diffchange diffchange-inline\">view/Entry/114962 \"math, ''n.3''\"] {{Vebarxiv|url=https</ins>:/<ins class=\"diffchange diffchange-inline\">/web.archive.org/web/20200404201407/http</ins>:<ins class=\"diffchange diffchange-inline\">//oed.com/view/Entry/114982 |date=2020-04-04 }} 4 aprel 2020-ci ild\u0259 Wayback Machine-d\u0259 arxivl\u0259\u015fdirilib. ''Oxford English Dictionary'', on-line version (2012).&lt;/ref&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">== Riyaziyyat f\u0259ls\u0259f\u0259si ==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Riyaziyyat\u0131n d\u0259qiq t\u0259rifi v\u0259 ya epistemoloji statusu </ins>haqq\u0131nda <ins class=\"diffchange diffchange-inline\">\u00fcmumi raz\u0131l\u0131q yoxdur.&lt;ref name=\":5\" /&gt;&lt;ref name=\":6\" /&gt; Aristotel riyaziyyat\u0131 \"k\u0259miyy\u0259t elmi\" kimi t\u0259yin etmi\u015f v\u0259 bu t\u0259rif 18-ci \u0259sr\u0259 q\u0259d\u0259r m\u0259\u015fhur olmu\u015fdur. Bununla bel\u0259, Aristotel qeyd edirdi ki, t\u0259kc\u0259 k\u0259miyy\u0259t\u0259 diqq\u0259t yetirm\u0259k riyaziyyat\u0131 fizika kimi elml\u0259rd\u0259n ay\u0131rmaya bil\u0259r; onun fikrinc\u0259, abstraksiya v\u0259 k\u0259miyy\u0259tin real n\u00fcmun\u0259l\u0259rd\u0259n \"fikr\u0259n ayr\u0131la bil\u0259n\" bir x\u00fcsusiyy\u0259t kimi \u00f6yr\u0259nilm\u0259si riyaziyyat\u0131 dig\u0259rl\u0259rind\u0259n ay\u0131r\u0131r.&lt;ref name=\":35\"&gt;Franklin, James (July 8, 2009). [https://books.google.com/books?id=mbn35b2ghgkC&amp;pg=PA104 ''Philosophy of Mathematics'']. pp. 104\u2013106. ISBN 978-0-08-093058-9. 6 sentyabr 2015 tarixind\u0259 [https://web.archive.org/web/20150906134402/https://books.google.com/books?id=mbn35b2ghgkC&amp;pg=PA104#v=onepage&amp;q&amp;f=false orijinal\u0131ndan] arxivl\u0259\u015fdirilib.&lt;/ref&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">19-cu \u0259srd\u0259 riyaziyyat\u0131n t\u0259dqiqi ciddi \u015f\u0259kild\u0259 artd\u0131, k\u0259miyy\u0259t v\u0259 \u00f6l\u00e7\u00fc il\u0259 d\u0259qiq \u0259laq\u0259si olmayan qrup n\u0259z\u0259riyy\u0259si v\u0259 [[proyektiv h\u0259nd\u0259s\u0259]] kimi m\u00fcc\u0259rr\u0259d m\u00f6vzulara toxunma\u011fa ba\u015flayanda riyaziyyat\u00e7\u0131lar v\u0259 filosoflar m\u00fcxt\u0259lif yeni t\u0259rifl\u0259r verm\u0259y\u0259 ba\u015flad\u0131lar.&lt;ref name=\":35\"/&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Pe\u015f\u0259kar riyaziyyat\u00e7\u0131lar\u0131n \u00e7oxu riyaziyyat\u0131n t\u0259rifi il\u0259 maraqlanm\u0131r v\u0259 ya onu qeyri-m\u00fc\u0259yy\u0259n hesab edir. H\u0259tta riyaziyyat\u0131n s\u0259n\u0259t v\u0259 ya elm olmas\u0131 il\u0259 ba\u011fl\u0131 ortaq bir q\u0259rar yoxdur.&lt;ref name=\":6\" /&gt; B\u0259zil\u0259ri sad\u0259c\u0259 deyirl\u0259r ki, \"riyaziyyat riyaziyyat\u00e7\u0131lar\u0131n i\u015fidir\".&lt;ref name=\":5\" /&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== \u00dc\u00e7 apar\u0131c\u0131 n\u00f6v ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Bu g\u00fcn riyaziyyat\u0131n \u00f6nd\u0259 g\u0259l\u0259n \u00fc\u00e7 yana\u015fma n\u00f6v\u00fc, [[logisist]], [[\u0130ntuisionist|intuisionist]] v\u0259 formalist adlan\u0131r v\u0259 h\u0259r biri f\u0259rqli bir f\u0259ls\u0259fi d\u00fc\u015f\u00fcnc\u0259 m\u0259kt\u0259bini \u0259ks etdirir. Bunlar\u0131n ham\u0131s\u0131n\u0131n ciddi q\u00fcsurlar\u0131 var, he\u00e7 biri geni\u015f \u015f\u0259kild\u0259 q\u0259bul edilmir v\u0259 he\u00e7 bir uzla\u015fma m\u00fcmk\u00fcn g\u00f6r\u00fcnm\u00fcr.&lt;ref name=\":36\"&gt;Cajori, Florian (1893). A History of Mathematics. American Mathematical Society (1991 reprint). pp. [https://books.google.com/books?id=mGJRjIC9fZgC&amp;pg=PA285 285\u201386] {{Vebarxiv|url=https://web.archive.org/web/20170107115659/https://books.google.com/books?id=mGJRjIC9fZgC&amp;pg=PA285|date=2017-01-07}}. ISBN 978-0-8218-2102-2&lt;/ref&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">==== Logisist t\u0259rifl\u0259r ====</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Riyaziyyat\u0131n m\u0259ntiq bax\u0131m\u0131ndan ilk t\u0259rifi [[Benjamin Peyrs]] (1870) idi. O riyaziyyat\u0131 \"laz\u0131mi n\u0259tic\u0259l\u0259r \u00e7\u0131xaran elm\" adland\u0131r\u0131rd\u0131.&lt;ref name=\":37\"&gt;Snapper, Ernst (September 1979). \"The Three Crises in Mathematics: Logicism, Intuitionism, and Formalism\". ''Mathematics Magazine''. '''52''' (4): 207\u201316. doi:10.2307/2689412. JSTOR 2689412.&lt;/ref&gt; Principia Mathematica'da Bertran [[Bertran Rassel|Rassel]] v\u0259 [[Vaythed Alfred Nort|Alfred Nort Vaythed]] m\u0259ntiq kimi tan\u0131nan f\u0259ls\u0259fi proqram\u0131 ir\u0259li s\u00fcrd\u00fcl\u0259r v\u0259 b\u00fct\u00fcn riyazi anlay\u0131\u015flar\u0131n, m\u00fcdd\u0259alar\u0131n v\u0259 prinsipl\u0259rin tamamil\u0259 simvolik m\u0259ntiq bax\u0131m\u0131ndan m\u00fc\u0259yy\u0259n edil\u0259 v\u0259 isbat oluna bil\u0259c\u0259yini s\u00fcbut etm\u0259y\u0259 \u00e7al\u0131\u015fd\u0131. Riyaziyyat\u0131n m\u0259ntiqi t\u0259rifin\u0259 misal olaraq [[Rasselin]] \"Riyaziyyat b\u00fct\u00f6vl\u00fckd\u0259 simvolik m\u0259ntiqdir\" (1903) \u0259s\u0259ridir.&lt;ref name=\":38\"&gt;Peirce, Benjamin (1882). ''[[iarchive:bub gb De0GAAAAYAAJ|Linear Associative Algebra]]''. Van Nostrand. p. 1.&lt;/ref&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">==== \u0130ntuisionist t\u0259rifl\u0259r ====</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Riyaziyyat\u00e7\u0131 L. E. J. Brauerin f\u0259ls\u0259f\u0259sind\u0259n ir\u0259li g\u0259l\u0259n intuisioist t\u0259rifl\u0259r riyaziyyat\u0131 m\u00fc\u0259yy\u0259n zehni prosesl\u0259rl\u0259 eynil\u0259\u015fdirir. \u0130ntuisionist t\u0259rif\u0259r\u0259 misal olaraq \"Riyaziyyat bir-birinin ard\u0131nca konstruksiyalar\u0131n h\u0259yata ke\u00e7irilm\u0259sind\u0259n ibar\u0259t olan zehni f\u0259aliyy\u0259tdir\".&lt;ref name=\":36\" /&gt; [[\u0130ntuisionizm]]in \u00f6z\u0259lliyi ondan ibar\u0259tdir ki, o, dig\u0259r t\u0259rifl\u0259r\u0259 g\u00f6r\u0259 etibarl\u0131 hesab edil\u0259n b\u0259zi riyazi fikirl\u0259ri r\u0259dd edir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">X\u00fcsusil\u0259, dig\u0259r riyaziyyat f\u0259ls\u0259f\u0259l\u0259ri in\u015fa edil\u0259 bilm\u0259s\u0259l\u0259r d\u0259 m\u00f6vcudlu\u011fu s\u00fcbuta yetiril\u0259 bil\u0259n obyektl\u0259r\u0259 icaz\u0259 vers\u0259 d\u0259, intuitivizm yaln\u0131z insan\u0131n h\u0259qiq\u0259t\u0259n qura bil\u0259c\u0259yi riyazi obyektl\u0259r\u0259 icaz\u0259 verir. \u0130ntuisiya\u00e7\u0131lar da xaric edilmi\u015f orta qanunu r\u0259dd edirl\u0259r (m\u0259s\u0259l\u0259n, &lt;math&gt; {\\displaystyle P\\vee \\neg P}&lt;/math&gt;). Baxmayaraq ki, bu m\u00f6vqe onlar\u0131 uy\u011fun s\u00fcbut metodu kimi ziddiyy\u0259tli s\u00fcbutun \u00fcmumi bir variant\u0131n\u0131, y\u0259ni &lt;math&gt; {\\displaystyle \\neg P\\to \\bot }&lt;/math&gt;-d\u0259n &lt;math&gt;P&lt;/math&gt;-nin \u00e7\u0131xarmas\u0131n\u0131 r\u0259dd etm\u0259y\u0259 m\u0259cbur edir. Bu m\u00f6vqe onlar\u0131 ziddiyy\u0259tli s\u00fcbutun \u00fcmumi bir variant\u0131n\u0131, y\u0259ni &lt;math&gt;{\\displaystyle P\\to \\bot }&lt;/math&gt;-d\u0259n &lt;math&gt; \\neg P&lt;/math&gt;-nin \u00e7\u0131xar\u0131\u015f\u0131n\u0131 ala bil\u0259rl\u0259r. Onlar \u00fc\u00e7\u00fcn &lt;math&gt;{\\displaystyle \\neg (\\neg P)}&lt;/math&gt; &lt;math&gt;P&lt;/math&gt;-d\u0259n daha z\u0259if ifad\u0259dir.&lt;ref name=\":39\"&gt;Russell, Bertrand (1903). ''[[iarchive:principlesmathe00russgoog|The Principles of Mathematics]]''. p. 5. Retrieved June 20, 2015.&lt;/ref&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">==== Formalist t\u0259rifl\u0259r ====</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Formalist t\u0259rifl\u0259r riyaziyyat\u0131 simvollar v\u0259 onlar\u0131n \u00fcz\u0259rind\u0259 \u0259m\u0259laparma qaydalar\u0131 il\u0259 m\u00fc\u0259yy\u0259n edir. [[Haskel Karri]] riyaziyyat\u0131 sad\u0259c\u0259 olaraq \"formal sisteml\u0259r elmi\" kimi t\u0259yin etmi\u015fdir.&lt;ref name=\":40\"&gt;Iemhoff, Rosalie (March 4, 2020). Zalta, Edward N. (ed.). [https://plato.stanford.edu/archives/fall2020/entries/intuitionism/ Intuitionism in the Philosophy of Mathematics]. Metaphysics Research Lab, Stanford University. 31 mart 2021 tarixind\u0259 [https://web.archive.org/web/20210331144031/https://plato.stanford.edu/archives/fall2020/entries/intuitionism/ orijinal\u0131ndan] arxivl\u0259\u015fdirilib \u2013 via Stanford Encyclopedia of Philosophy.&lt;/ref&gt; R\u0259smi sistem simvollar v\u0259 ya i\u015far\u0259l\u0259r toplusudur v\u0259 simvollar\u0131n d\u00fcsturlara nec\u0259 birl\u0259\u015fdiril\u0259c\u0259yin\u0259 dair b\u0259zi qaydalard\u0131r. Formal sisteml\u0259rd\u0259 aksiom s\u00f6z\u00fc \"\u00f6z-\u00f6z\u00fcn\u0259 a\u015fkar olan h\u0259qiq\u0259t\" kimi adi m\u0259nadan f\u0259rqli x\u00fcsusi m\u0259na da\u015f\u0131y\u0131r v\u0259 sistemin qaydalar\u0131 m\u00fc\u0259yy\u0259n bir formal sistem\u0259 daxil olan i\u015far\u0259l\u0259rin birl\u0259\u015fm\u0259sin\u0259 istinad etm\u0259k \u00fc\u00e7\u00fcn istifad\u0259 olunur.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== Riyaziyyat elm kimi ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Fayl:Carl Friedrich Gauss.jpg|left|thumb|211x211px|Karl Fridrix Qauss, riyaziyyat\u00e7\u0131lar\u0131n \u015fah\u0131 kimi tan\u0131n\u0131r]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Alman riyaziyyat\u00e7\u0131s\u0131 F. Qauss riyaziyyat\u0131 \"elml\u0259rin \u015fah\u0131\" adland\u0131r\u0131rd\u0131.&lt;ref name=\":41\"&gt;Haskell Brooks Curry (1951). [https://books.google.com/books?id=tZHrBQgp1bkC ''Outlines of a Formalist Philosophy of Mathematics''] {{Vebarxiv|url=https://web.archive.org/web/20170107184354/https://books.google.com/books?id=tZHrBQgp1bkC|date=2017-01-07}}. Elsevier. p. 56. ISBN 978-0-444-53368-5. [https://books.google.com/books?id=tZHrBQgp1bkC&amp;pg=PA56 A\u00e7, s\u0259hif\u0259 56] {{Vebarxiv|url=https://web.archive.org/web/20220321153224/https://books.google.com/books?id=tZHrBQgp1bkC&amp;pg=PA56|date=2022-03-21}}&lt;/ref&gt; Bu yax\u0131nlarda Markus du Sautoy riyaziyyat\u0131 \"elmin \u015fah\u0131\u2026 elmi k\u0259\u015ffin arxas\u0131nda duran \u0259sas h\u0259r\u0259k\u0259tverici q\u00fcvv\u0259\" adland\u0131rd\u0131.&lt;ref name=\":42\"&gt;[[:en:Mathematics#CITEREFWaltershausen1965|Waltershausen 1965]], p. 79.&lt;/ref&gt; Filosof [[Karl Popper]] qeyd edirdi ki, \"riyazi n\u0259z\u0259riyy\u0259l\u0259rin \u00e7oxu fizika v\u0259 biologiyan\u0131n n\u0259z\u0259riyy\u0259l\u0259ri kimi hipotetiko-deduktivdir: buna g\u00f6r\u0259 d\u0259 saf riyaziyyat f\u0259rziyy\u0259l\u0259ri olan t\u0259bi\u0259t elml\u0259rin\u0259 son zamanlar daha yax\u0131n g\u00f6r\u00fcn\u00fcr\".&lt;ref name=\":43\"&gt;du Sautoy, Marcus (June 25, 2010). [http://www.bbc.co.uk/programmes/b00stcgv \"Nicolas Bourbaki\"]. A Brief History of Mathematics. Event occurs at min. 12:50. BBC Radio 4. 16 dekabr 2016 tarixind\u0259 [https://web.archive.org/web/20161216050402/http://www.bbc.co.uk/programmes/b00stcgv orijinaldan] arxivl\u0259\u015fdirilib.&lt;/ref&gt; Popper h\u0259m\u00e7inin qeyd etmi\u015fdir ki, \"M\u0259n bir sistemin t\u0259cr\u00fcbi v\u0259 ya elmi oldu\u011funu, o halda q\u0259bul ed\u0259c\u0259y\u0259m ki, o, t\u0259cr\u00fcb\u0259 il\u0259 s\u0131naqdan ke\u00e7iril\u0259 bilsin\".&lt;ref name=\":44\"&gt;Popper, Karl (2002) [https://books.google.com/?id=KZvXAAAAMAAJ 1959]. ''The Logic of Scientific Discovery''. Abingdon-on-Thames: Routledge. p. [18]. ISBN 978-0-415-27843-0.&lt;/ref&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Riyaziyyat fiziki elml\u0259rin bir \u00e7ox sah\u0259l\u0259ri il\u0259, x\u00fcsus\u0259n d\u0259 f\u0259rziyy\u0259l\u0259rin m\u0259ntiqi n\u0259tic\u0259l\u0259rinin t\u0259dqiqi il\u0259 \u00e7ox ox\u015fard\u0131r. \u0130ntuisiya v\u0259 eksperimentasiya h\u0259m riyaziyyatda, h\u0259m d\u0259 (dig\u0259r) elml\u0259rd\u0259 f\u0259rziyy\u0259l\u0259rin formala\u015fmas\u0131nda da rol oynay\u0131r. Eksperimental riyaziyyat\u0131n riyaziyyat daxilind\u0259ki \u0259h\u0259miyy\u0259ti artmaqda davam edir v\u0259 hesablama v\u0259 simulyasiya h\u0259m elml\u0259rd\u0259, h\u0259m d\u0259 riyaziyyatdak\u0131 rolu getdikc\u0259 art\u0131r.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Bir s\u0131ra m\u00fc\u0259llifl\u0259r hesab edirl\u0259r ki, riyaziyyat bir elm deyil, \u00e7\u00fcnki o, empirik d\u0259lill\u0259r\u0259 \u0259saslanm\u0131r.&lt;ref name=\":45\"&gt;Bishop, Alan (1991). [https://books.google.com/books?id=9AgrBgAAQBAJ&amp;pg=PA54 \"Environmental activities and mathematical culture\"]. ''Mathematical Enculturation: A Cultural Perspective on Mathematics Education''. Norwell, Massachusetts: Kluwer Academic Publishers. pp. 20\u201359. ISBN 978-0-792-31270-3. 25 dekabr 2020 tarixind\u0259 [https://web.archive.org/web/20201225195821/https://books.google.com/books?id=9AgrBgAAQBAJ&amp;pg=PA54 orijinal\u0131ndan] arxivl\u0259\u015fdirilib.&lt;/ref&gt;&lt;ref name=\":46\"&gt;Shasha, Dennis Elliot; Lazere, Cathy A. (1998). ''Out of Their Minds: The Lives and Discoveries of 15 Great Computer Scientists''. Springer. p. 228.&lt;/ref&gt;&lt;ref name=\":47\"&gt;Nickles, Thomas (2013). \"The Problem of Demarcation\". ''Philosophy of Pseudoscience: Reconsidering the Demarcation Problem''. Chicago: The University of Chicago Press. p. 104.&lt;/ref&gt;&lt;ref name=\":48\"&gt;Pigliucci, Massimo (2014). [https://philosophynow.org/issues/102/Are_There_Other_Ways_of_Knowing \"Are There 'Other' Ways of Knowing?\"]. ''Philosophy Now''. 13 may 2020 tarixind\u0259 [https://web.archive.org/web/20200513190522/https://philosophynow.org/issues/102/Are_There_Other_Ways_of_Knowing orijinal\u0131ndan] arxivl\u0259\u015fdirilib.&lt;/ref&gt; Bu m\u00f6vzuda riyaziyyat\u00e7\u0131lar\u0131n fikirl\u0259ri m\u00fcxt\u0259lifdir. Bir \u00e7ox riyaziyyat\u00e7\u0131lar&lt;ref name=\":49\"&gt;See, for example [[Bertran Rassel|Bertrand Russell]]'s statement \"Mathematics, rightly viewed, possesses not only truth, but supreme beauty \u2026\" in his ''History of Western Philosophy''&lt;/ref&gt; hesab edirl\u0259r ki, \u00f6z sah\u0259l\u0259rini elm adland\u0131rmaq onun estetik t\u0259r\u0259finin \u0259h\u0259miyy\u0259tini v\u0259 \u0259n\u0259n\u0259vi yeddi liberal s\u0259n\u0259td\u0259 tarixini azaltmaq dem\u0259kdir; ba\u015fqalar\u0131 hesab edirl\u0259r ki, onun elml\u0259rl\u0259 \u0259laq\u0259sin\u0259 m\u0259h\u0259l qoymamaq riyaziyyat v\u0259 onun elm v\u0259 m\u00fch\u0259ndislikd\u0259ki t\u0259tbiql\u0259ri aras\u0131ndak\u0131 interfeysin riyaziyyatda \u00e7oxlu inki\u015fafa s\u0259b\u0259b oldu\u011funa g\u00f6z yummaqd\u0131r.&lt;ref name=\":50\"&gt;[https://undsci.berkeley.edu/article/mathematics \"The science checklist applied: Mathematics\"]. ''undsci.berkeley.edu''. 27 oktyabr 2019 tarixind\u0259 [https://web.archive.org/web/20191027021023/https://undsci.berkeley.edu/article/mathematics orijinal\u0131ndan] arxivl\u0259\u015fdirilib.&lt;/ref&gt; Bu bax\u0131\u015f f\u0259rqinin ortaya \u00e7\u0131xmas\u0131n\u0131n bir yolu, riyaziyyat\u0131n yarad\u0131ld\u0131\u011f\u0131 (s\u0259n\u0259tkarl\u0131qda oldu\u011fu kimi) v\u0259 ya k\u0259\u015ff edildiyi (elmd\u0259 oldu\u011fu kimi) il\u0259 ba\u011fl\u0131 f\u0259ls\u0259fi m\u00fcbahis\u0259l\u0259rd\u0259dir. Praktikada riyaziyyat\u00e7\u0131lar, ad\u0259t\u0259n, \u00fcmumi s\u0259viyy\u0259d\u0259 aliml\u0259r\u0259 g\u00f6r\u0259 qrupla\u015fd\u0131r\u0131l\u0131r, lakin daha inc\u0259 s\u0259viyy\u0259l\u0259rd\u0259 ayr\u0131l\u0131rlar. Bu, riyaziyyat f\u0259ls\u0259f\u0259sind\u0259 n\u0259z\u0259rd\u0259n ke\u00e7iril\u0259n \u00e7oxsayl\u0131 m\u0259s\u0259l\u0259l\u0259rd\u0259n biridir.&lt;ref name=\":51\"&gt;Borel, Armand (March 2017). \"[[doi:10.4171/news/103/8|Mathematics: Art and Science]]\". EMS Newsletter. '''3''' (103): 37\u201345. [[R\u0259q\u0259mli obyektin identifikatoru|doi]]:[[doi:10.4171/news/103/8|10.4171/news/103/8]]. [[ISSN]] [[issn:1027-488X|1027\u2013488X]].&lt;/ref&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">== Abstrakt idrak ==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Riyaziyyat m\u00fcxt\u0259lif \u00e7oxsayl\u0131 probleml\u0259r \u00fcz\u00fcnd\u0259n meydana \u00e7\u0131xm\u0131\u015fd\u0131r. \u018fvv\u0259lc\u0259 bunlar ticar\u0259t, torpaq \u00f6l\u00e7m\u0259, memarl\u0131q v\u0259 daha sonra</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{{\u015e\u0259kill\u0259r albomu</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| alt yaz\u0131 = \u0130saak Nyuton (solda) v\u0259 Qotfrid Vilhelm Leybnis sonsuz ki\u00e7il\u0259nl\u0259r hesab\u0131n\u0131 yaratm\u0131\u015flar.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| yer\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 = right</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| istiqam\u0259t\u00a0 \u00a0 \u00a0 = \u00fcf\u00fcqi\u00a0 </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| ba\u015fl\u0131q_yer\u00a0 \u00a0  = left</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| ba\u015fl\u0131q_arxafon = #BBDD99</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| miqyas\u00a0 \u00a0 \u00a0 \u00a0  = 350</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| \u015f\u0259kil1\u00a0 \u00a0 \u00a0 \u00a0  = GodfreyKneller-IsaacNewton-1689.jpg</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| alt1\u00a0 \u00a0 \u00a0 \u00a0 \u00a0  = Colored dice with white background </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| \u015f\u0259kil2\u00a0 \u00a0 \u00a0 \u00a0  = Gottfried_Wilhelm_Leibniz,_Bernhard_Christoph_Francke.jpg</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| alt2\u00a0 \u00a0 \u00a0 \u00a0 \u00a0  = Colored dice with checkered background </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">astronomiyayla ba\u011fl\u0131 idi; bu g\u00fcn b\u00fct\u00fcn elml\u0259r riyaziyyat \u00fc\u00e7\u00fcn probleml\u0259r ir\u0259li s\u00fcr\u00fcr, bir \u00e7ox probleml\u0259r d\u0259 riyaziyyat\u0131n \u00f6z daxilind\u0259 ortaya \u00e7\u0131x\u0131r. M\u0259s\u0259l\u0259n, fizik Ri\u00e7ard Feynman riyazi m\u00fclahiz\u0259 v\u0259 fiziki anlay\u0131\u015f\u0131n birl\u0259\u015fm\u0259sind\u0259n istifad\u0259 ed\u0259r\u0259k kvant mexanikas\u0131n\u0131n trayektoriya-inteqral formulyasiyas\u0131n\u0131 icad etdi v\u0259 riyaziyyat bug\u00fcnk\u00fc sim n\u0259z\u0259riyy\u0259sin\u0259, t\u0259bi\u0259tin d\u00f6rd fundamental q\u00fcvv\u0259sini birl\u0259\u015fdirm\u0259y\u0259 c\u0259hd ed\u0259n, lakin h\u0259l\u0259 d\u0259 t\u0259kmill\u0259\u015fm\u0259kd\u0259 olan elmi n\u0259z\u0259riyy\u0259y\u0259 ilham verm\u0259kd\u0259 davam edir.&lt;ref name=\":52\"&gt;Meinhard E. Mayer (2001). \"The Feynman Integral and Feynman's Operational Calculus\". ''Physics Today''. '''54''' (8): 48. [[Bibcode]]:[https://ui.adsabs.harvard.edu/abs/2001PhT....54h..48J 2001PhT\u2026.54h..48J] {{Vebarxiv|url=https://web.archive.org/web/20210927234225/https://ui.adsabs.harvard.edu/abs/2001PhT....54h..48J |date=2021-09-27 }}. [[R\u0259q\u0259mli obyektin identifikatoru|doi]]:[[doi:10.1063/1.1404851|10.1063/1.1404851]].&lt;/ref&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">B\u0259zi riyaziyyatlar yaln\u0131z onu ilhamland\u0131ran sah\u0259y\u0259 aiddir v\u0259 bu sah\u0259d\u0259 g\u0259l\u0259c\u0259k probleml\u0259rin h\u0259lli \u00fc\u00e7\u00fcn t\u0259tbiq olunur. Ancaq \u00e7ox vaxt bir sah\u0259d\u0259n ilhamlanan riyaziyyat bir \u00e7ox sah\u0259l\u0259rd\u0259 faydal\u0131 oldu\u011funu s\u00fcbut edir v\u0259 riyazi anlay\u0131\u015flar\u0131n \u00fcmumi fonduna qo\u015fulur. \u00c7ox vaxt saf riyaziyyat v\u0259 t\u0259tbiqi riyaziyyat aras\u0131nda f\u0259rq qoyulur. Bununla bel\u0259, saf riyaziyyat m\u00f6vzular\u0131 \u00e7oxlu t\u0259tbiql\u0259r\u0259 malikdir. M\u0259s\u0259l\u0259n, [[kriptoqrafiya]]da \u0259d\u0259dl\u0259r n\u0259z\u0259riyy\u0259si t\u0259tbiq olunur.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Bu diqq\u0259t\u0259layiq fakt, h\u0259tta \"\u0259n saf\" riyaziyyat\u0131n da \u00e7ox vaxt praktik t\u0259tbiql\u0259r\u0259 malik oldu\u011funu ortaya qoyur. Fizik [[Yucin Viqner]] bu fenomeni \"riyaziyyat\u0131n a\u011flas\u0131\u011fmaz effektivliyi\" adland\u0131r\u0131r.&lt;ref name=\":8\" /&gt; Riyaziyyat f\u0259ls\u0259f\u0259\u00e7isi Mark Steyner bu m\u00f6vzuda geni\u015f yaz\u0131b v\u0259 etiraf edir ki, riyaziyyat\u0131n t\u0259tbiq oluna bilm\u0259si \"naturalizm \u00fc\u00e7\u00fcn bir problemdir\".&lt;ref name=\":53\"&gt;Steiner, Mark (1998). ''The Applicability of Mathematics as a Philosophical Problem''. Cambridge, Mass: Harvard University Press. p. 176. [[ISBN]] [[X\u00fcsusi:BookSources/0674043987|0674043987]].&lt;/ref&gt; Riyaziyyat f\u0259ls\u0259f\u0259\u00e7isi Meri Lenq \u00fc\u00e7\u00fcn fiziki d\u00fcnyan\u0131n kainat\u0131n h\u00fcdudlar\u0131ndan k\u0259narda m\u00f6vcud olan s\u0259b\u0259bsiz riyazi varl\u0131qlar\u0131n dikt\u0259sin\u0259 uy\u011fun h\u0259r\u0259k\u0259t etm\u0259si \"xo\u015f t\u0259sad\u00fcfd\u00fcr\".&lt;ref name=\":54\"&gt;Leng, Mary (2010). ''Mathematics and Reality''. Oxford University Press. p. 239. [[ISBN]] &lt;bdi&gt;[[X\u00fcsusi:BookSources/978-0199280797|978\u20130199280797]]&lt;/bdi&gt;.&lt;/ref&gt; Dig\u0259r t\u0259r\u0259fd\u0259n, b\u0259zi antirealistl\u0259r \u00fc\u00e7\u00fcn riyazi \u015feyl\u0259r aras\u0131nda \u0259ld\u0259 edil\u0259n \u0259laq\u0259l\u0259r kainatdak\u0131 cisiml\u0259r aras\u0131nda \u0259ld\u0259 edil\u0259n \u0259laq\u0259l\u0259ri \u0259ks etdirir, buna g\u00f6r\u0259 d\u0259 \"xo\u015f t\u0259sad\u00fcf\" yoxdur.&lt;ref name=\":54\" /&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">\u018fks\u0259r t\u0259dqiqat sah\u0259l\u0259rind\u0259 oldu\u011fu kimi, elm d\u00f6vr\u00fcnd\u0259 d\u0259 bilik partlay\u0131\u015f\u0131 ixtisasla\u015fmaya g\u0259tirib \u00e7\u0131xard\u0131: indi riyaziyyatda y\u00fczl\u0259rl\u0259 ixtisasla\u015fm\u0131\u015f sah\u0259 var v\u0259 riyaziyyat\u0131n b\u00f6lm\u0259l\u0259r \u00fczr\u0259 \u0259n son t\u0259snifat\u0131 46 s\u0259hif\u0259d\u0259n ibar\u0259tdir.&lt;ref name=\":55\"&gt;[https://www.ams.org/mathscinet/msc/pdfs/classification2010.pdf \"Mathematics Subject Classification 2010\"] (PDF). 14 may 2011 tarixind\u0259 orijinal\u0131ndan [https://web.archive.org/web/20110514091144/http://www.ams.org/mathscinet/msc/pdfs/classification2010.pdf arxivl\u0259\u015fdirilib] (PDF).&lt;/ref&gt; H\u0259tta t\u0259tbiqi riyaziyyat\u0131n bir ne\u00e7\u0259 sah\u0259si praktik sah\u0259l\u0259rl\u0259 birl\u0259\u015f\u0259r\u0259k statistika, \u0259m\u0259liyyatlar t\u0259dqiqi v\u0259 komp\u00fcter elmi kimi m\u00fcst\u0259qil f\u0259nl\u0259r\u0259 \u00e7evrilmi\u015fdir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Riyaziyyata meyilli olanlar \u00fc\u00e7\u00fcn \u00e7ox vaxt riyaziyyat\u0131n m\u00fc\u0259yy\u0259n bir estetik t\u0259r\u0259fi var. Bir \u00e7ox riyaziyyat\u00e7\u0131lar riyaziyyat\u0131n z\u0259rifliyind\u0259n, onun daxili estetikas\u0131ndan v\u0259 daxili g\u00f6z\u0259lliyind\u0259n dan\u0131\u015f\u0131r, onun sad\u0259liyini v\u0259 \u00fcmumiliyini t\u0259qdir edirl\u0259r. Evklidin sonsuz sayda sad\u0259 \u0259d\u0259dl\u0259r oldu\u011funu isbat etm\u0259si kimi sad\u0259 v\u0259 z\u0259rif bir isbatda v\u0259 s\u00fcr\u0259tli Furye \u00e7evrilm\u0259si kimi hesablaman\u0131 s\u00fcr\u0259tl\u0259ndir\u0259n z\u0259rif \u0259d\u0259di \u00fcsulda g\u00f6z\u0259llik var. Q. H. Hardi ''Riyaziyyat\u00e7\u0131n\u0131n \u00fczrxahl\u0131\u011f\u0131'' \u0259s\u0259rind\u0259 bu estetik m\u00fclahiz\u0259l\u0259rin \u00f6zl\u00fcy\u00fcnd\u0259 saf riyaziyyat\u0131n \u00f6yr\u0259nilm\u0259sin\u0259 haqq qazand\u0131rmaq \u00fc\u00e7\u00fcn yet\u0259rli oldu\u011funa inam\u0131n\u0131 ifad\u0259 etmi\u015fdir. \u018fh\u0259miyy\u0259tlilik, g\u00f6zl\u0259nilm\u0259zlik, qa\u00e7\u0131lmazl\u0131q v\u0259 q\u0259na\u0259t kimi meyarlar\u0131 riyazi estetikaya t\u00f6hf\u0259 ver\u0259n amill\u0259r kimi m\u00fc\u0259yy\u0259n etmi\u015fdir.&lt;ref name=\":56\"&gt;Hardy, G. H. (1940). ''A Mathematician's Apology''. Cambridge University Press. [[ISBN]] &lt;bdi&gt;[[X\u00fcsusi:BookSources/978-0-521-42706-7|978-0-521-42706-7]]&lt;/bdi&gt;.&lt;/ref&gt; Riyazi t\u0259dqiqat \u00e7ox zaman riyazi obyektin kritik x\u00fcsusiyy\u0259tl\u0259rini axtar\u0131r. Bu x\u00fcsusiyy\u0259tl\u0259rl\u0259 obyektin s\u0259ciyy\u0259l\u0259ndirilm\u0259si kimi ifad\u0259 edil\u0259n teorem m\u00fckafatd\u0131r. X\u00fcsusil\u0259 y\u0131\u011fcam v\u0259 a\u015fkar riyazi arqumentl\u0259rin n\u00fcmun\u0259l\u0259ri [[Martin Ayqner]] v\u0259 [[G\u00fcnter Siqler]] t\u0259r\u0259find\u0259n ''Kitabdan isbatlar'' kitab\u0131nda d\u0259rc edilmi\u015fdir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">\u018fyl\u0259nc\u0259li riyaziyyat\u0131n populyarl\u0131\u011f\u0131 bir \u00e7oxlar\u0131n\u0131n riyazi suallar\u0131 h\u0259ll etm\u0259kd\u0259n h\u0259zz ald\u0131\u011f\u0131n\u0131n ba\u015fqa bir \u0259lam\u0259tidir. Dig\u0259r sosial ekstremall\u0131qda is\u0259 filosoflar riyaziyyat f\u0259ls\u0259f\u0259sind\u0259 riyazi isbat\u0131n t\u0259bi\u0259tin\u0259 ox\u015far olaraq probleml\u0259r tapma\u011fa davam edirl\u0259r.&lt;ref name=\":57\"&gt;Gold, Bonnie; Simons, Rogers A. (2008). ''Proof and Other Dilemmas: Mathematics and Philosophy''. MAA.&lt;/ref&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">== \u0130\u015far\u0259l\u0259m\u0259l\u0259r, dil v\u0259 ciddilik ==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Fayl:Leonhard Euler 2.jpg|thumb|240x240px|Leonard Eyler bu g\u00fcn istifad\u0259 olunan riyazi i\u015far\u0259l\u0259rin bir \u00e7oxunu yaratm\u0131\u015f v\u0259 populyarla\u015fd\u0131rm\u0131\u015fd\u0131r.]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Bu g\u00fcn istifad\u0259 olunan riyazi qeydl\u0259rin \u0259ks\u0259riyy\u0259ti 16-c\u0131 \u0259sr\u0259 q\u0259d\u0259r icad edilmi\u015fdir.&lt;ref name=\":58\"&gt;[http://jeff560.tripod.com/mathsym.html \"Earliest Uses of Various Mathematical Symbols\"]. 20 fevral 2016 tarixind\u0259 [https://web.archive.org/web/20160220073955/http://jeff560.tripod.com/mathsym.html orijinal\u0131ndan] arxivl\u0259\u015fdirilib.&lt;/ref&gt; Bundan \u0259vv\u0259l riyaziyyat riyazi k\u0259\u015ffl\u0259ri m\u0259hdudla\u015fd\u0131ran s\u00f6zl\u0259rl\u0259 yaz\u0131l\u0131rd\u0131.&lt;ref name=\":59\"&gt;[[:en:Mathematics#CITEREFKline1990|Kline 1990]], p. 140, on Diophantus; p. 261, on Vieta.&lt;/ref&gt; Eyler (1707\u20131783) bu g\u00fcn istifad\u0259 olunan bir \u00e7ox i\u015far\u0259l\u0259ri ir\u0259li s\u00fcrm\u00fc\u015fd\u00fcr. M\u00fcasir i\u015far\u0259l\u0259r riyaziyyat\u0131 pe\u015f\u0259karlar \u00fc\u00e7\u00fcn \u00e7ox asanla\u015fd\u0131r\u0131r, lakin yeni ba\u015flayanlar \u00e7ox vaxt bunu \u00e7\u0259tin hesab edirl\u0259r. [[Barbara Okley]]\u0259 g\u00f6r\u0259, bunu riyazi fikirl\u0259rin t\u0259bii dild\u0259n daha m\u00fcc\u0259rr\u0259d v\u0259 daha \u00e7ox \u015fifr\u0259li olmas\u0131 il\u0259 \u0259laq\u0259l\u0259ndirm\u0259k olar.&lt;ref name=\":60\"&gt;[[:en:Mathematics#CITEREFOakley2014|Oakley 2014]], p. 16: \"Focused problem solving in math and science is often more effortful than focused-mode thinking involving language and people. This may be because humans haven't evolved over the millennia to manipulate mathematical ideas, which are frequently more abstractly encrypted than those of conventional language.\"&lt;/ref&gt; \u0130nsanlar\u0131n </ins>tez-tez <ins class=\"diffchange diffchange-inline\">s\u00f6z\u00fc uy\u011fun g\u0259l\u0259n fiziki obyektl\u0259 (m\u0259s\u0259l\u0259n, in\u0259k) eynil\u0259\u015fdir\u0259 bildiyi t\u0259bii dild\u0259n f\u0259rqli olaraq, riyazi simvollar m\u00fcc\u0259rr\u0259ddir v\u0259 he\u00e7 bir fiziki analoqu yoxdur.&lt;ref name=\":61\"&gt;[[:en:Mathematics#CITEREFOakley2014|Oakley 2014]], p. 16: \"What do I mean by abstractness? You can point to a real live cow chewing its cud in a pasture and equate it with the letters c\u2013o\u2013w on the page. But you can't point to a real live plus sign that the symbol '+' is modeled after \u2013 the idea underlying the plus sign is more abstract.\"&lt;/ref&gt; Riyazi simvollar h\u0259m d\u0259 adi s\u00f6zl\u0259rd\u0259n daha y\u00fcks\u0259k \u015fifr\u0259l\u0259nir, y\u0259ni bir simvol bir s\u0131ra m\u00fcxt\u0259lif \u0259m\u0259ll\u0259ri v\u0259 ya fikirl\u0259ri kodlaya bil\u0259r.&lt;ref name=\":62\"&gt;[[:en:Mathematics#CITEREFOakley2014|Oakley 2014]], p. 16: \"By encryptedness, I mean that one symbol can stand for a number of different operations or ideas, just as the multiplication sign symbolizes repeated addition.\"&lt;/ref&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Riyazi dili ba\u015fa d\u00fc\u015fm\u0259k yeni ba\u015flayanlar \u00fc\u00e7\u00fcn \u00e7\u0259tin ola bil\u0259r, \u00e7\u00fcnki h\u0259tta v\u0259 ya v\u0259 yaln\u0131z kimi \u00fcmumi terminl\u0259r g\u00fcnd\u0259lik nitqd\u0259 oldu\u011fundan daha d\u0259qiq m\u0259na da\u015f\u0131y\u0131r v\u0259 a\u00e7\u0131q v\u0259 sah\u0259 kimi dig\u0259r terminl\u0259r onlar\u0131n \u0259hat\u0259 etm\u0259diyi x\u00fcsusi riyazi ideyalara istinad edir. Laymen m\u0259nalar\u0131 Riyaziyyat dilin\u0259 homeomorfizm v\u0259 inteqrasiya kimi riyaziyyatdan k\u0259nar m\u0259nas\u0131 olmayan bir \u00e7ox texniki terminl\u0259r d\u0259 daxildir. Bundan \u0259lav\u0259, \"ancaq v\u0259 ancaq\" \u00fc\u00e7\u00fcn iff (\"if and only if\") kimi q\u0131sa ifad\u0259l\u0259r riyazi jarqona aiddir. X\u00fcsusi i\u015far\u0259l\u0259rin v\u0259 texniki l\u00fc\u011f\u0259tin s\u0259b\u0259bi var: riyaziyyat g\u00fcnd\u0259lik nitqd\u0259n daha \u00e7ox d\u0259qiqlik t\u0259l\u0259b edir. Riyaziyyat\u00e7\u0131lar dil v\u0259 m\u0259ntiqin bu d\u0259qiqliyin\u0259 \"ciddilik\" deyirl\u0259r.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Riyazi s\u00fcbutlar\u0131n etibarl\u0131l\u0131\u011f\u0131 prinsipc\u0259 ciddilik m\u0259s\u0259l\u0259sidir. Riyaziyyat\u00e7\u0131lar \u00f6z teoreml\u0259rinin sistematik m\u00fclahiz\u0259 vasit\u0259sil\u0259 aksiomlardan ir\u0259li g\u0259lm\u0259sini ist\u0259yirl\u0259r. Bu, m\u00f6vzunun tarixind\u0259 bir \u00e7ox hallar\u0131 ba\u015f vermi\u015f s\u0259hv intuisiyalara \u0259saslanan s\u0259hv \"teoreml\u0259rd\u0259n\" uzaqla\u015fmaq \u00fc\u00e7\u00fcnd\u00fcr.{{efn|Formal isbatda s\u0259hv ola bil\u0259c\u0259k sad\u0259 n\u00fcmun\u0259l\u0259r \u00fc\u00e7\u00fcn yanl\u0131\u015f isbata\u00a0 bax\u0131n.}} Riyaziyyatda g\u00f6zl\u0259nil\u0259n s\u0259rtlik s\u0259viyy\u0259si zamanla d\u0259yi\u015fdi: yunanlar \u0259trafl\u0131 arqumentl\u0259r g\u00f6zl\u0259yirdil\u0259r, lakin \u0130saak Nyutonun d\u00f6vr\u00fcnd\u0259 t\u0259tbiq olunan \u00fcsullar daha az ciddilikd\u0259 idi. Nyutonun istifad\u0259 etdiyi t\u0259rifl\u0259r\u0259 xas olan probleml\u0259r 19-cu \u0259srd\u0259 diqq\u0259tli t\u0259hlilin v\u0259 formal isbatlar\u0131n yenid\u0259n canlanmas\u0131na s\u0259b\u0259b olard\u0131. Riyaziyyat\u0131n s\u0259hv ba\u015fa d\u00fc\u015f\u00fclm\u0259si riyaziyyat\u0131n b\u0259zi \u00fcmumi yanl\u0131\u015f t\u0259s\u0259vv\u00fcrl\u0259rinin diqq\u0259t\u0259layiq s\u0259b\u0259bidir. Bu g\u00fcn riyaziyyat\u00e7\u0131lar komp\u00fcterin k\u00f6m\u0259yi il\u0259 isbatlar haqq\u0131nda \u00f6z aralar\u0131nda m\u00fcbahis\u0259 etm\u0259y\u0259 davam edirl\u0259r. B\u00f6y\u00fck hesablamalar\u0131 yoxlamaq \u00e7\u0259tin oldu\u011fundan, istifad\u0259 olunan komp\u00fcter proqram\u0131 s\u0259hv olarsa, bu c\u00fcr s\u00fcbutlar s\u0259hv ola bil\u0259r.{{efn|\u0130sbatda ba\u015f ver\u0259n b\u00f6y\u00fck hesablaman\u0131n etibarl\u0131 hesab edilm\u0259si \u00fc\u00e7\u00fcn, \u00fcmumiyy\u0259tl\u0259, m\u00fcst\u0259qil proqram t\u0259minat\u0131ndan istifad\u0259 etm\u0259kl\u0259 iki hesablama t\u0259l\u0259b olunur.}}&lt;ref name=\":63\"&gt;Ivars Peterson, The Mathematical Tourist, Freeman, 1988, ISBN 978-0-7167-1953-3. p. 4 \"A few complain that the computer program can't be verified properly\", (in reference to the Haken\u2013Apple proof of the Four Color Theorem).&lt;/ref&gt; Dig\u0259r t\u0259r\u0259fd\u0259n, isbat al\u0259tl\u0259ri \u0259l il\u0259 yaz\u0131lm\u0131\u015f isbatda veril\u0259 bilm\u0259y\u0259n b\u00fct\u00fcn detallar\u0131n yoxlan\u0131lmas\u0131na imkan yarad\u0131r v\u0259 Feyt-Tompson teoremi kimi uzun isbatlar\u0131n d\u00fczg\u00fcnl\u00fcy\u00fcn\u0259 \u0259minlik verir.{{efn| Tam isbat\u0131 ehtiva ed\u0259n kitab 1000-d\u0259n \u00e7ox s\u0259hif\u0259d\u0259n ibar\u0259tdir.}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">\u018fn\u0259n\u0259vi olaraq aksiomlar \"\u00f6z-\u00f6z\u00fcn\u0259 ayd\u0131n olan h\u0259qiq\u0259tl\u0259r\" kimi d\u00fc\u015f\u00fcn\u00fcl\u00fcrd\u00fc, lakin bu fikir problemlidir.&lt;ref name=\":64\"&gt;\"The method of 'postulating' what we want has many advantages; they are the same as the advantages of theft over honest toil.\" [[Bertran Rassel|Bertrand Russell]] (1919), ''Introduction to Mathematical Philosophy'', New York and London, [http://www-history.mcs.st-and.ac.uk/Quotations/Russell.html p. 71]. 20 iyun 2015 tarixind\u0259 Wayback Machine-d\u0259 [https://web.archive.org/web/20150620162751/http://www-history.mcs.st-and.ac.uk/Quotations/Russell.html orijinal\u0131ndan] arxivl\u0259\u015fdirilib.&lt;/ref&gt; Formal s\u0259viyy\u0259d\u0259 aksiom yaln\u0131z aksiomatik sistemin b\u00fct\u00fcn t\u00f6r\u0259m\u0259 d\u00fcsturlar\u0131 kontekstind\u0259 daxili m\u0259na da\u015f\u0131yan simvollar silsil\u0259sidir. Hilbertin proqram\u0131n\u0131n m\u0259qs\u0259di b\u00fct\u00fcn riyaziyyat\u0131 m\u00f6hk\u0259m aksiomatik \u0259saslar \u00fcz\u0259rind\u0259 qurmaq idi, lakin G\u00f6delin natamaml\u0131q teoremin\u0259 g\u00f6r\u0259, h\u0259r bir (kifay\u0259t q\u0259d\u0259r g\u00fccl\u00fc) aksiomatik sistemin h\u0259ll olunmayan d\u00fcsturlar\u0131 var; v\u0259 buna g\u00f6r\u0259 d\u0259 riyaziyyat\u0131n son aksiomatizasiyas\u0131 m\u00fcmk\u00fcn deyil. Buna baxmayaraq, riyaziyyat \u00e7ox vaxt (formal m\u0259zmununa g\u00f6r\u0259) b\u0259zi aksiomatizasiyada \u00e7oxluq n\u0259z\u0259riyy\u0259sind\u0259n ba\u015fqa bir \u015fey deyil, o m\u0259nada t\u0259s\u0259vv\u00fcr edilir ki, h\u0259r bir riyazi ifad\u0259 v\u0259 ya isbat \u00e7oxluqlar n\u0259z\u0259riyy\u0259si daxilind\u0259 d\u00fcsturlara \u00e7evril\u0259 bil\u0259r.&lt;ref name=\":65\"&gt;Patrick Suppes, ''Axiomatic Set Theory'', Dover, 1972, [[ISBN]] [[X\u00fcsusi:BookSources/978-0-486-61630-8|978-0-486-61630-8]]. p. 1, \"Among the many branches of modern mathematics set theory occupies a unique place: with a few rare exceptions the entities which are studied and analyzed in mathematics may be regarded as certain particular sets or classes of objects.\"&lt;/ref&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">== Riyaziyyat m\u00fckafatlar\u0131 ==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Fayl:FieldsMedalFront.jpg|thumb|204x204px|Filds medal\u0131n\u0131n \u00f6n t\u0259r\u0259fi]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">\u015e\u00fcbh\u0259siz ki, riyaziyyat \u00fczr\u0259 \u0259n prestijli m\u00fckafat 1936-c\u0131 ild\u0259 t\u0259sis edil\u0259n v\u0259 d\u00f6rd ild\u0259n bir ([[\u0130kinci D\u00fcnya m\u00fcharib\u0259si]] istisna olmaqla) d\u00f6rd n\u0259f\u0259r\u0259 veril\u0259n [[Filds medal\u0131]]d\u0131r.&lt;ref name=\":66\"&gt;[[:en:Mathematics#CITEREFMonastyrsky2001|Monastyrsky 2001]], p. 1: \"The Fields Medal is now indisputably the best known and most influential award in mathematics.\"&lt;/ref&gt;&lt;ref name=\":67\"&gt;[[:en:Mathematics#CITEREFRiehm2002|Riehm 2002]], pp. 778\u201382&lt;/ref&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">1978-ci ild\u0259 t\u0259sis edilmi\u015f riyaziyyat \u00fczr\u0259 [[Volf m\u00fckafat]]\u0131,&lt;ref name=\":68\"&gt;[https://wolffund.org.il/the-wolf-prize/ \"The Wolf Prize\"]. ''Wolf Foundation''. 12 yanvar 2020 tarixind\u0259 [https://web.archive.org/web/20200112205029/https://wolffund.org.il/the-wolf-prize/ orijinal\u0131ndan] arxivl\u0259\u015fdirilib.&lt;/ref&gt; dig\u0259r b\u00f6y\u00fck beyn\u0259lxalq m\u00fckafat, [[Abel m\u00fckafat\u0131]] 2002-ci ild\u0259 t\u0259sis edilmi\u015f&lt;ref name=\":69\"&gt;[https://abelprize.no/page/about-abel-prize \"About the Abel Prize | The Abel Prize\"] {{Vebarxiv|url=https://web.archive.org/web/20220414060442/https://abelprize.no/page/about-abel-prize |date=2022-04-14 }}. ''abelprize.no''.&lt;/ref&gt; v\u0259 ilk d\u0259f\u0259 2003-c\u00fc ild\u0259 verilmi\u015fdir.&lt;ref name=\":70\"&gt;[https://www.britannica.com/science/Abel-Prize \"Abel Prize | mathematics award | Britannica\"] {{Vebarxiv|url=https://web.archive.org/web/20200126120202/https://www.britannica.com/science/Abel-Prize |date=2020-01-26 }}. www.britannica.com.&lt;/ref&gt; \u00c7ern medal\u0131 nailiyy\u0259tl\u0259ri qiym\u0259tl\u0259ndirm\u0259k \u00fc\u00e7\u00fcn 2010-cu ild\u0259 t\u0259qdim edilmi\u015fdir.&lt;ref name=\":71\"&gt;[https://www.mathunion.org/imu-awards/chern-medal-award \"Chern Medal Award | International Mathematical Union (IMU)\"] {{Vebarxiv|url=https://web.archive.org/web/20100825071850/http://www.mathunion.org/general/prizes/chern/details |date=2010-08-25 }}. ''www.mathunion.org''.&lt;/ref&gt; Bu m\u00fckafatlar m\u00fch\u00fcm yenilikl\u0259r v\u0259 ya h\u0259r hans\u0131 bir sah\u0259d\u0259ki g\u00f6rk\u0259mli problemin h\u0259llin\u0259 g\u00f6r\u0259 verilir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">\"Hilbert probleml\u0259ri\" adlanan 23 a\u00e7\u0131q problemd\u0259n ibar\u0259t m\u0259\u015fhur siyah\u0131 1900-c\u00fc ild\u0259 alman riyaziyyat\u00e7\u0131s\u0131 [[David Hilbert]] t\u0259r\u0259find\u0259n t\u0259rtib edilmi\u015fdir.&lt;ref name=\":72\"&gt;[https://www.simonsfoundation.org/2020/05/06/hilberts-problems-23-and-math/ \"Hilbert's Problems: 23 and Math\"] {{Vebarxiv|url=https://web.archive.org/web/20220123011430/https://www.simonsfoundation.org/2020/05/06/hilberts-problems-23-and-math/ |date=2022-01-23 }}. ''Simons Foundation''. may 6, 2020.&lt;/ref&gt; \u0130ndi bu probleml\u0259rd\u0259n \u0259n az\u0131 on \u00fc\u00e7\u00fc h\u0259ll olunub.&lt;ref name=\":72\" /&gt; 2000-ci ild\u0259 \"Minilliyin probleml\u0259ri\" adlanan yeddi m\u00fch\u00fcm problemd\u0259n ibar\u0259t yeni siyah\u0131 d\u0259rc olundu. Onlardan yaln\u0131z biri, Riman hipotezi Hilbertin probleml\u0259rind\u0259n birini t\u0259krarlay\u0131r. Bu probleml\u0259rd\u0259n h\u0259r hans\u0131 birinin h\u0259llin\u0259 g\u00f6r\u0259 1 milyon dollar m\u00fckafat verilir.&lt;ref name=\":73\"&gt;[http://www.claymath.org/millennium-problems/millennium-prize-problems \"The Millennium Prize Problems | Clay Mathematics Institute\"] {{Vebarxiv|url=https://web.archive.org/web/20150703184941/http://www.claymath.org/millennium-problems/millennium-prize-problems |date=2015-07-03 }}. ''www.claymath.org''.&lt;/ref&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Hal-haz\u0131rda bu probleml\u0259rd\u0259n yaln\u0131z biri, [[Puankare teoremi|Puankare hipotezi]] rus riyaziyyat\u00e7\u0131s\u0131 [[Qriqori Perelman]] t\u0259r\u0259find\u0259n h\u0259ll edilmi\u015fdir.&lt;ref name=\":74\"&gt;[http://www.claymath.org/millennium-problems \"Millennium Problems | Clay Mathematics Institute\"] {{Vebarxiv|url=https://web.archive.org/web/20181220122925/http://www.claymath.org/millennium-problems |date=2018-12-20 }}. ''www.claymath.org''.&lt;/ref&gt; 2006-c\u0131 ild\u0259 ''Science'' jurnal\u0131 Perelman\u0131n Puankare hipotezini isbat etm\u0259sini ilin elmi s\u0131\u00e7ray\u0131\u015f\u0131 kimi qeyd etmi\u015fdir.&lt;ref name=\"press-release-2010-03-18\"&gt;{{cite press release|publisher=Clay Mathematics Institute|date=March 18, 2010|title=Prize for Resolution of the Poincar\u00e9 Conjecture Awarded to Dr. Grigoriy Perelman|url=http://www.claymath.org/sites/default/files/millenniumprizefull.pdf|access-date=November 13, 2015|quote=The Clay Mathematics Institute (CMI) announces today that Dr. Grigoriy Perelman of St. Petersburg, Russia, is the recipient of the Millennium Prize for resolution of the Poincar\u00e9 conjecture.|archive-url=https://web.archive.org/web/20100322192115/http://www.claymath.org/poincare/|archive-date=March 22, 2010|url-status=dead}}&lt;/ref&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">== Qeydl\u0259r ==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{{notelist}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">== \u0130stinadlar ==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{{\u0130stinad siyah\u0131s\u0131}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">== \u018fd\u0259biyyat siyah\u0131s\u0131 ==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Boyer, C. B. (1991). ''[[iarchive:historyofmathema00boye|A History of Mathematics]]'' (2nd ed.). New York: Wiley. [[ISBN]] [[X\u00fcsusi:BookSources/978-0-471-54397-8|978-0-471-54397-8]].</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Eves, Howard (1990). ''An Introduction to the History of Mathematics'' (6th ed.). Saunders. [[ISBN]] [[X\u00fcsusi:BookSources/978-0-03-029558-4|978-0-03-029558-4]].</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Kline, Morris (1990). ''[[iarchive:mathematicalthou00klin|Mathematical Thought from Ancient to Modern Times]]'' (Paperback ed.). New York: Oxford University Press. [[ISBN]] [[X\u00fcsusi:BookSources/978-0-19-506135-2|978-0-19-506135-2]].</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Monastyrsky, Michael (2001). [http://www.fields.utoronto.ca/aboutus/FieldsMedal_Monastyrsky.pdf \"Some Trends in Modern Mathematics and the Fields Medal\"] (PDF). ''CMS \u2013 NOTES \u2013 de la SMC''. Canadian Mathematical Society. '''33''' (2\u20133). 13 avqust 2006 tarixind\u0259 orijinal\u0131ndan [https://web.archive.org/web/20060813224844/http://www.fields.utoronto.ca/aboutus/FieldsMedal_Monastyrsky.pdf arxivl\u0259\u015fdirilib] (PDF).</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Oakley, Barbara (2014). ''[[iarchive:isbn 9780399165245|A Mind For Numbers: How to Excel at Math and Science (Even If You Flunked Algebra)]]''. New York: Penguin Random House. [[ISBN]] [[X\u00fcsusi:BookSources/978-0-399-16524-5|978-0-399-16524-5]]. A Mind for Numbers.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Peirce, Benjamin (1881). Peirce, Charles Sanders (ed.). [https://books.google.com/books?id=De0GAAAAYAAJ&amp;q=Peirce+Benjamin+Linear+Associative+Algebra+&amp;pg=PA1 \"Linear associative algebra\"]. ''American Journal of Mathematics'' (Corrected, expanded, and annotated revision with an 1875 paper by B. Peirce and annotations by his son, C. S. Peirce, of the 1872 lithograph ed.). '''4''' (1\u20134): 97\u2013229. [[R\u0259q\u0259mli obyektin identifikatoru|doi]]:[[doi:10.2307/2369153|10.2307/2369153]]. [[:en:Hdl (identifier)|hdl]]:[https://hdl.handle.net/2027%2Fhvd.32044030622997 2027/hvd.32044030622997]. JSTOR [https://www.jstor.org/stable/2369153 2369153]. Corrected, expanded, and annotated revision with an 1875 paper by B. Peirce and annotations by his son, C. S. Peirce, of the 1872 lithograph ed. Google Eprint and as an extract, D. Van Nostrand, 1882, ''Google'' [[iarchive:bub gb De0GAAAAYAAJ|Eprint]]. 31 mart 2021 tarixind\u0259 orijinal\u0131ndan [https://web.archive.org/web/20210331144012/https://books.google.com/books?id=De0GAAAAYAAJ&amp;q=Peirce+Benjamin+Linear+Associative+Algebra+&amp;pg=PA1 arxivl\u0259\u015fdirilib].</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Peterson, Ivars (2001). ''Mathematical Tourist, New and Updated Snapshots of Modern Mathematics''. Owl Books. [[ISBN]] [[X\u00fcsusi:BookSources/978-0-8050-7159-7|978-0-8050-7159-7]].</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Popper, Karl R. (1995). \"On knowledge\". ''[[iarchive:insearchofbetter00karl|In Search of a Better World: Lectures and Essays from Thirty Years]]''. New York: Routledge. [[Bibcode]]:[https://ui.adsabs.harvard.edu/abs/1992sbwl.book.....P 1992sbwl.book\u2026.. P]. [[ISBN]] [[X\u00fcsusi:BookSources/978-0-415-13548-1|978-0-415-13548-1]].</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Riehm, Carl (August 2002). [https://www.ams.org/notices/200207/comm-riehm.pdf \"The Early History of the Fields Medal\"] (PDF). ''Notices of the AMS''. '''49''' (7): 778\u201382. 26 oktyabr 2006 tarixind\u0259 orijinal\u0131ndan [https://web.archive.org/web/20061026000014/http://www.ams.org/notices/200207/comm-riehm.pdf arxivl\u0259\u015fdirilib</ins>] <ins class=\"diffchange diffchange-inline\">(PDF).</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>* <ins class=\"diffchange diffchange-inline\">Sevryuk, Mikhail B. (January 2006). </ins>[https://<ins class=\"diffchange diffchange-inline\">www</ins>.<ins class=\"diffchange diffchange-inline\">ams</ins>.org/<ins class=\"diffchange diffchange-inline\">bull/2006-43-01/S0273-0979-05-01069-4/S0273-0979-05-01069-4.pdf \"Book Reviews\"] (PDF). ''Bulletin of the American Mathematical Society''. '''43''' (1): 101\u201309. [[R\u0259q\u0259mli obyektin identifikatoru|doi]]:[[doi:10.1090/S0273-0979-05-01069-4|10.1090/S0273-0979-05-01069-4]]. 23 iyul 2006 tarixind\u0259 orijinal\u0131ndan [https://web.archive.org/web/20060723082901/http://www.ams.org/bull/2006-43-01/S0273-0979-05-01069-4/S0273-0979-05-01069-4.pdf arxivl\u0259\u015fdirilib] (PDF).</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Waltershausen, Wolfgang Sartorius von (1965) [first published 1856]. ''Gauss zum Ged\u00e4chtniss''. S\u00e4ndig Reprint Verlag H. R. Wohlwend. [[ISBN]] [[X\u00fcsusi:BookSources/978-3-253-01702-5|978-3-253-01702-5]].</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">== \u018flav\u0259 oxu \u00fc\u00e7\u00fcn ==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Benson, Donald C. (2000). ''The Moment of Proof: Mathematical Epiphanies''. Oxford University Press. [[ISBN]] [[X\u00fcsusi:BookSources/978-0-19-513919-8|978-0-19-513919-8]].</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Davis, Philip J.; Hersh, Reuben (1999). ''The Mathematical Experience'' (Reprint ed.). Mariner Books. [[ISBN]] [[X\u00fcsusi:BookSources/978-0-395-92968-1|978-0-395-92968-1]].</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Courant, Richard; Robbins, Herbert (1996). ''What Is Mathematics?: An Elementary Approach to Ideas and Methods'' (2nd ed.). New York: Oxford University Press. [[ISBN]] [[X\u00fcsusi:BookSources</ins>/<ins class=\"diffchange diffchange-inline\">978-0-19-510519-3|978-0-19-510519-3]].</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Albert Eyn\u015fteyn|Einstein, Albert]] (1923). ''[http://searchworks.stanford.edu/view</ins>/<ins class=\"diffchange diffchange-inline\">1216826 Sidelights on Relativity: I. Ether and relativity. II. Geometry and experience (translated by G. B. Jeffery, D. Sc., and W. Perrett, Ph. D)]''. E. P. Dutton &amp; Co., New York. Archived from the original on July 25, 2014. Retrieved September 23, 2012.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Gullberg, Jan (1997). ''[[iarchive:mathematicsfromb1997gull|Mathematics: From the Birth of Numbers]]'' (1st ed.). W. W. Norton &amp; Company. &lt;nowiki&gt;ISBN 978</ins>-<ins class=\"diffchange diffchange-inline\">0-393-04002-9&lt;/nowiki&gt;</ins>.</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Hazewinkel, Michiel, ed. (2000). Encyclopaedia of Mathematics. Kluwer Academic Publishers. \u2013 Sovet riyaziyyat ensiklopediyas\u0131n\u0131n t\u0259rc\u00fcm\u0259 edilmi\u015f v\u0259 geni\u015fl\u0259ndirilmi\u015f versiyas\u0131, on cildd\u0259. H\u0259m d\u0259 ka\u011f\u0131z n\u00fcsx\u0259d\u0259 v\u0259 CD-ROM-da v\u0259 onlayn 3 iyul 2011 tarixind\u0259 [[Wayback Machine]] t\u0259r\u0259find\u0259n [https://web</ins>.<ins class=\"diffchange diffchange-inline\">archive</ins>.org/<ins class=\"diffchange diffchange-inline\">web/20140725191049/http://searchworks.stanford.edu/view/1216826 arxivl\u0259\u015fdirilib].</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Jourdain, Philip E. B. (2003). \"The Nature of Mathematics\". In James R. Newman (ed.). The World of Mathematics. Dover Publications. [[ISBN]] [[X\u00fcsusi:BookSources/978-0-486-43268-7|978-0-486-43268-7]].</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Maier, Annaliese (1982). Steven Sargent (ed.). ''At the Threshold of Exact Science: Selected Writings of Annaliese Maier on Late Medieval Natural Philosophy''. Philadelphia: University of Pennsylvania Press.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Pappas, Theoni (June 1989). ''The Joy Of Mathematics'' (Revised ed.). Wide World Publishing. [[ISBN]] [[X\u00fcsusi:BookSources/978-0-933174-65-8|978-0-933174-65</ins>-<ins class=\"diffchange diffchange-inline\">8]].</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{{Elml\u0259r}}{{Xarici istinadlar}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Kateqoriya:Riyaziyyat| ]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Kateqoriya:\u018fsas m\u00f6vzular\u0131n t\u0259snifat\u0131]</ins>]</div></td></tr>\n"
    }
}